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PREFACE 

Fermat, Euler, Lagrange, Legendre.. .introitum ad penetralia huius 

divinae scientiae aperuerunt, quantisque divitiis ahundent patefecerunt 

Oauss, Disquisitiones Arithmeticae 

The study of transcendental numbers, springing from such diverse 

sources as the ancient Greek question concerning the squaring of the 

circle, the rudimentary researches of Liouville and Cantor, Hermite’s 

investigations on the exponential function and the seventh of Hilbert’s 

famous list of 23 problems, has now developed into a fertile and 

extensive theory, enriching widespread branches of mathematics; and 

the time has seemed opportune to prepare a systematic treatise. My 

aim has been to provide a comprehensive account of the recent major 

discoveries in the field; the text includes, more especially, expositions 

of the latest theories relating to linear forms in the logarithms of 

algebraic numbers, of Schmidt’s generalization of the Thue-Siegel- 

Roth theorem, of Shidlovsky’s work on Siegel’s ^-functions and of 

Sprindzuk’s solution to the Mahler conjecture. Classical aspects of the 

subject are discussed in the course of the narrative; in particular, to 

facilitate the acquisition of a true historical perspective, a survey of 

the theory as it existed at about the turn of the century is given at the 

beginning. Proofs in the subject tend, as will be appreciated, to be 

long and intricate, and thus it has been necessary to select for detailed 

treatment only the most fundamental results; moreover, generally 

speaking, emphasis has been placed on arguments which have led to 

the strongest propositions known to date or have yielded the widest 

application. Nevertheless, it is hoped that adequate references have 

been included to associated works. 

Notwithstanding its long history, it will be apparent that the theory 

of transcendental numbers bears a youthful countenance. Many topics 

would certainly benefit by deeper studies and several famous long¬ 

standing problems remain open. As examples, one need mention only 

the celebrated conjectures concerning the algebraic independence of 

e and n and the transcendence of Euler’s constant y, the solution to 

either of which would represent a major advance. If this book should 

ix 



X PREFACE 

play some small role in promoting future progress, the author will he 

well satisfied. 

The text has arisen from numerous lectures delivered in Cambridge, 

America and elsewhere, and it has also formed the substance of an 

Adams Prize essay. 

I am grateful to Dr D. W. Masser for his kind assistance in check¬ 

ing the proofs, and also to the Cambridge University Press for the 

care they have taken with the printing. 

Cambridge, 1974 A.B. 
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THE ORIGINS 

1. Liouville’s theorem 

The theory of transcendental numbers was originated by Liouville in 

his famous memoir1' of 1844 in which he obtained, for the first time, 

a class, tres-etendue, as it was described in the title of the paper, of 

numbers that satisfy no algebraic equation with integer coefficients. 

Some isolated problems pertaining to the subject, however, had been 

formulated long before this date, and the closely related study of 

irrational numbers had constituted a major focus of attention for 

at least a century preceding. Indeed, by 1744, Euler had already 

established the irrationality of e, and, by 1761, Lambert had con¬ 

firmed the irrationality of n. Moreover, the early studies of continued 

fractions had revealed several basic features concerning the approxi¬ 

mation of irrational numbers by rationals. It was known, for instance, 

that for any irrational a there exists an infinite sequence of rationals 

pjq (q > 0) such that* \ot, — pjq\ < 1 jq2, and it was known also that the 

continued fraction of a quadratic irrational is ultimately periodic, 

whence there exists c = c(cc) > 0 such that \oc—p/q\ > cjq2 for all 

rationals pjq (q > 0). Liouville observed that a result of the latter kind 

holds more generally, and that there exists in fact a limit to the 

accuracy with which any algebraic number, not itself rational, can he 

approximated by rationals. It was this observation that provided the 

first practical criterion whereby transcendental numbers could he 

constructed. 

Theorem 1.1. For any algebraic number a with degree n > 1, there 

exists c = c(a) > 0 such that \a—pjq\ > cjq71 for all rationals pjq (q > 0). 

The theorem follows almost at once from the definition of an 

algebraic number. A real or complex number is said to he algebraic if 

it is a zero of a polynomial with integer coefficients; every algebraic 

f CM. 18 (1844), 883-5, 910-11; J. Math, pures appl. 16 (1851), 133-42. For abbrevia¬ 

tions see page 130. 

t This is in fact easily verified; for any integer Q > 1, two of the Q + 1 numbers 1, 

{qa} (0 ^ q < Q), whore {qa} denotes the fractional part of qa, lie in one of the Q 

subintorvals of length 1 IQ into which [0, 1] can bo divided, and their difference has 

the form qa — p. 

[ 1 1 



2 THE ORIGINS 

number a is the zero of some such irreducible* polynomial, say /’, 

unique up to a constant multiple, and the degree of a is defined as the 

degree of P. It suffices to prove the theorem when a is real; in this case, 

for any rational pjq (q > 0), we have by the mean value theorem: 

-P(p/q) = P(gl) —P(p/q) = (oc—p/q) P'(£) 

forsomegbetweenp/g'anda. Clearlyonecan assume that |a—pjq\ < 1, 

for the result would otherwise be valid trivially; then |£| < 1 + |a| and 

thus |P'(£)| < 1/c for some c = c(a) > 0; hence 

\oc-p/q\ > c\P(pjq)\. 

But, since P is irreducible, we have P(pjq) =t= 0, and the integer 

\qnP(p/q)\ is therefore at least 1; the theorem follows. Note that one 

can easily give an explicit value for c; in fact one can take 

c-1 = »2(1 + \a\)n-1H, 

where H denotes the height of a, that is, the maximum of the absolute 

values of the coefficients of P. 

A real or complex number that is not algebraic is said to be tran¬ 

scendental. In view of Theorem 1.1, an obvious instance of such a 
oo 

number is given by £ = S 10~m!. For if we write 
n—1 

Pj = 10#* £ 10-«!, qj=\^ (j= 1,2,...), 
71=1 

then Pj, qj are relatively prime rational integers and we have 

\i-vM= S 10—1 
n=j’+l 

< 10-W+O! (1 + 10-1 + 10-2 + ...) = ig-qj-i-1 < qp. 

Many other transcendental numbers can be specified on the basis of 

Liouville’s theorem; indeed any non-terminating decimal in which 

there occur sufficiently long blocks of zeros, or any continued fraction 

in which the partial quotients increase sufficiently rapidly, provides 

an example. Numbers of this kind, that is real £ which possess a 

sequence of distinct rational approximationspjqn (n = 1,2,...) such 

that |£—pjqn\ < 1 /q%n, where limsup<uB = oo, have been termed 

Liouville numbers; and, of course, these are transcendental. But other, 

t That is, does not faotorizo over the integers or, oquivalontly, by Gauss’ lemma, 
over the rationalx. 



LIOUVILLE’S THEOREM 3 

less obvious, applications of Liouville’s idea to the construction of 

transcendental numbers have been described; in particular, Maillet1 

used an extension of Theorem 1.1 concerning approximations by 

quadratic irrationals to establish the transcendence of a remarkable 

class of quasi-periodic continued fractions .* 

In 1874, Cantor introduced the concept of countability and this 

leads at once to the observation that ‘ almost all ’ numbers are tran¬ 

scendental. Cantor’s work may be regarded as the forerunner of some 

important metrical theory about which we shall speak in Chapter 9. 

2. Transcendence of e 

In 1873, there appeared Hermite’s epoch-making memoir entitled 

Sur lafonction exponentielle§ in which he established the transcendence 

of e, the natural base for logarithms. The irrationality of e had been 

demonstrated, as remarked earlier, by Euler in 1744, and Liouville 

had shown in 1840, directly from the defining series, that in fact neither 

e nor e2 could be rational or a quadratic irrational; but Hermite’s work 

began a new era. In particular, within a decade, Lindemann succeeded 

in generalizing Hermite’s methods and, in a classic paper," he proved 

that 7r is transcendental and solved thereby the ancient Greek problem 

concerning the quadrature of the circle. The Greeks had sought to 

construct, with ruler and compasses only, a square with area equal to 

that of a given circle. This plainly amounts to constructing two points 

in the plane at a distance *Jn apart, assuming that a unit length is 

prescribed. But, since all points capable of construction are defined 

by the intersection of lines and circles, it follows easily that their 

co"-ordinates in a suitable frame of reference are given by algebraic 

numbers. Thus the transcendence of n implies that the quadrature of 

the circle is impossible. 

The work of Hermite and Lindemann was simplified by Weierstrass11 

in 1885, and further simplified by Hilbert,1'1' Hurwitz11 and Gordan§§ in 

1893. We proceed now to demonstrate the transcendence of e and n in 

a style suggested by these later writers. 

f See Bibliography. f Cf. Mathematika, 9 (1962), 1-8. 

§ C.E. 77; = Oeuvres III, 150-81. || M.A. 20 (1882), 213-25. 

f Werke II, 341-62. ft Oes. Abh. I, 1-4. 

tf Odttingen Nachrichten (1893), 163-5. §§ M.A. 43 (1893), 222-5. 



4 THE ORIGINS 

Theorem 1.2. e is transcendental. 

Preliminary to the proof, we observe that if f(x) is any r^al poly¬ 

nomial with degree m, say, and if 

/(i)=J* e*_“/(w)dw, 

where t is an arbitrary complex number and the integral is taken over 

the line j oining 0 and t, then, by repeated integration by parts, we have t 

m m 

m = (i) 
3=0 3=0 

Further, if f(x) denotes the polynomial obtained from/by replacing 

each coefficient with its absolute value, then 

KW| ^ s? \t\eli'f(\t\). (2) 

Suppose now that e is algebraic, so that 

q0 + q1e+...+qnen=0 (3) 

for some integers n > 0, q0 4= 0, qx,..., qn. We shall compare estimates 

fOT J =q0I(0) + q1I(l) + ...+qnI(n), 

where I(t) is defined as above with 

f(x) — xp~\x — l)p ... (x — n)p, 

p denoting a large prime. From (1) and (3) we have 

m n 

J = - 2 S qk?m, 
3=0k=0 

where m = (n + l)p — 1. Now clearly /(5,(^) = 0 if j < p, k > 0 and if 

j < p— 1, k = 0, and thus for all J, 1c other than j = p— 1,1c = 0, f^\h) 

is an integer divisible by p\ \ further we have 

/<*>-«(0) = {p-\)\{-l)np{n\)p, 

whence, if p > w,/to_1)(0) is an integer divisible by {p— 1)! but not by 

p\. It follows that, if also p > |g0|, then J is a non-zero integer divisible 

by (j? — 1)! and thus | J\ > (p— 1)!. Butthe trivial estimate/(&) < (2 n)m 

together with (2) gives 

I*7! < l?i|«/(1) + — + |5,»| »«*/(*) < cP 
for some c independent of p. The estimates are inconsistent if p is 

sufficiently large and the contradiction proves the theorem. 

t /^*(jr) ilonotoH I ho/111 tlorivalivo of /. 
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Theorem 1.3. n is transcendental. 

Suppose the contrary, that n is algebraic; then also 6 = in is 

algebraic. Let 6 have degree d, let 6X (= 6), d2, ...,6d denote the con¬ 

jugates of 6 and let l signify the leading coefficient in the minimal 

polynomial* defining 6. From Euler’s equation ein = — 1, we obtain 

(l+e®i)(l+e®2)... (l+c®<*) = 0. 

The product on the left can be written as a sum of 2d terms e0, where 

® = ei^i + ••• + ed@d> 

and ej = 0 or 1; we suppose that precisely n of the numbers 

ejA + -" +ed&d 

are non-zero, and we denote these by av ..., ctn. We have then 

q + ea i +... + e*» = 0, (4) 

where q is the positive integer 2d — n. 

We shall compare estimates for 

J = I(CCX) +... +I(ccn), 

where I(t) is defined as in the proof of Theorem 1.2 with 

f(x) = Znpxp_1(x—aj)p ... (x — an)p, 

p again denoting a large prime. From (1) and (4) we have 

m m n 

■ 3 = 0 3‘ = 0fc=l 

where m — (n+l)p— 1. Now the sum over A; is a symmetric poly¬ 

nomial in lax,lan with integer coefficients, and it follows from two 

applications of the fundamental theorem on symmetric functions 

together with the observation that each elementary symmetric 

function in la^,lan is also an elementary symmetric function in the 

2d numbers 10, that it represents a rational integer. Further, since 

fu\ak) = 0 when j < p, the latter is plainly divisible by p\. 

Clearly also /<3,(0) is a rational integer divisible by p\ when 

j*p-l, and f(p-1){0) = {p_ !)[ (_i)nP ... ojp 

f That is, the irroduoiblo polynomial indioated earlier with relatively prime integer 

coefficients; tho coeffioiont of xa is called the leading coefficient, and it is assumed 

positivo. Tho conjugates arn tho zeros of tho polynomial. 
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is a rational integer divisible by (p — 1)! but not by p\ Up is sufficiently 

large. Hence, if^ > q, we have |«/| ^ (p— 1)!. But from (2) we obtain 

|J| < \a1\e^f(\a1\) + ... + \ccn\eMf(\an\) < c» 

for some c independent of p. The estimates are inconsistent for p 

sufficiently large, and the contradiction proves the theorem. 

3. Lindemann’s theorem 

The two preceding theorems, that is the transcendence of e and n, are 

special cases of a much more general result which Lindemann sketched 

in his original memoir of 1882, and which was later rigorously demon¬ 

strated by Weierstrass. 

Theorem 1.4. For any distinct algebraic numbers av ..., an and any 

non-zero algebraic numbers fii, - we have 

/#1e“i + ...+/#nea« * 0. 

It follows at once from Theorem 1.4 that eai,..., e** are algebraically 

independent for all algebraic a1;...,an linearly independent over the 

rationals; this form of the result is generally known as Lindemann’s 

theorem. As further immediate corollaries of Theorem 1.4, one sees 

that cos a, sin a and tan a are transcendental for all algebraic a + 0, 

and moreover log a is transcendental for algebraic a not 0 or 1. 

Suppose now that the theorem is false, so that 

... +finexn = 0. (5) 

One can clearly assume, without loss of generality, that the ft’s are 

rational integers, for this can be ensured by multiplying (5) by all the 

expressions obtained on allowing on the left to‘run inde¬ 

pendently through their respective conjugates and then further 

multiplying by a common denominator. Furthermore, one can 

assume that there exist integers 0 = nQ < % < ... < nr = n, such that 

ant+1,..., ant+l i® a complete set of conjugates for each t, and 

fint+l ••• — fint+i' 

For certainly a,.an are zeros of some polynomial with integer 

coefficients and degree N, say, and if an+1.av denote the remaining 

zeros, we have , , 0 , „ 
n(/?1ea*i + ... = 0, 

where the product is over nil permutations kx,.... kN of and 
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fin+i = • • • = /?jv = 0. The left-hand side can be expressed as an aggre¬ 

gate of terms exp^aq-t-... +hNocN) with integer coefficients, where 

hv...,hN are integers with sum N\, and clearly h1aki +... + hNotkN 

taken over all permutations kv ..., kN of 1.N is a complete set of 

conjugates; the condition concerning the equality of the /?’s follows 

by symmetry. Note also that, after collecting terms with the same 

exponents, one at least of the new coefficients /? will be non-zero; this 

is readily confirmed by considering the coefficient of the term with 

exponent that is highest according to the ordering of the complex 

numbers z = x + iy given by zx < z2 if xx < x2 or xx = x2 and y1 < y2. 

Let now l be any positive integer such that lav lan and lfiltlfin 

are algebraic integers,* and let 

ft(x) = lnP{(x-aj) ... (x-aJFKx-act) (1 <*<»), 

where p denotes a large prime. We shall compare estimates for 

l^i ••• «4|, where 

Ji = PxUfH) + ••• +finIi(*n) (1 < * ^ »). 

and I^t) is defined as in the proof of Theorem 1.2, with / = f{. From 

(1) and (5) we have m n 

«*i = - 2 
0k—1 

where m = np— 1. Further, is an algebraic integer divisible* 

by p\ unless/ = p — 1, k — i; and in the latter case we have 

/ip-1)K) = inp(j?-1)! n 
*:=i 
fc + i 

so'that it is an algebraic integer divisible by (p — 1)! but not by p! if p is 

sufficiently large. It follows that Ji is a non-zero algebraic integer 

divisible by (p — 1)!. Further, by the initial assumptions, we have 

m r—1 

Ji = - S S K+l) + • • • +/I»K+1)}> 
) = 0 i = 0 

and here each sum over t can be expressed as a polynomial in oq with 

rational coefficients independent of i; for clearly, since av ..., an is a 

complete set of conjugates, the coefficients of(x) can be expressed in 

this form. Thus Jl... Jn is rational, and so in fact a rational integer 

f An algebraic number is said to be an algebraic integer if the leading coefficient in 

its minimal defining polynomial is 1; if a is an algebraic number and l is the leading 

coefficient in its minimal polynomial, then la is an algebraic integer, 

t That is, tho quotient is an algobraic integer. 

3 BTN 
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divisible by ((^—1)!)". Hence we have \Jx...Jn\ ^ (p — 1)!. But (2) 

gives n 

\Ji\ < s 
k= 1 

for some c independent of p, and the inequalities are inconsistent if p is 

sufficiently large. The contradiction proves the theorem. 

The above proofs are simplified versions of the original arguments of 

Hermite and Lindemann and their motivation may seem obscure; 

indeed there is no explanation a priori for the introduction of the 

functions 7 and/. A deeper insight can best be obtained by studying 

the basic memoir of Hermite where, in modified form, the functions 

first occurred, but it may be said that they relate to generalizations, 

concerning simultaneous approximation, of the convergent® in the 

continued fraction expansion of ex. Further light on the topic will be 

shed by Chapters 10 and 11. Lindemann’s theorem formed the summit 

of the accomplishments of the last century, and our survey of the 

period is herewith concluded. 



2 

LINEAR FORMS IN LOGARITHMS 

1. Introduction 

In 1900, at the International Congress of Mathematicians held 

Paris, Hilbert raised, as the seventh of his famous list of 23 probler 

the question whether an irrational logarithm of an algebraic numl 

to an algebraic base is transcendental. The question is capable 

various alternative formulations; thus one can ask whether an in 

tional quotient of natural logarithms of algebraic numbers is trs 

scendental, or whether aP is transcendental for any algebraic numl 

a 4= 0,1 and any algebraic irrational /?. A special case relating 

logarithms of rational numbers can be traced to the writings of Eu 

more than a century before, but no apparent progress had been ma 

towards its solution. Indeed, Hilbert expressed the opinion that t 

resolution of the problem lay farther in the future than a proof of t 

Riemann hypothesis or Fermat’s last theorem. 

The first significant advance was made by Gelfond* in 1929. Emplc 

ing interpolation techniques of the kind that he had utilized previous 

in researches on integral integer-valued functions, 1 Gelfon d showed tl 

the logarithm of an algebraic number to an algebraic base cannot be 

imaginary quadratic irrational, that is, aP is transcendental for a 

algebraic number a 4= 0,1 and any imaginary quadratic irrational 

in particular, this implies that e? = (— l)-i is transcendental. T 

result was extended to real quadratic irrationals /? by Kuzmin8 

1930. But it was clear that direct appeal to an interpolation series i 

e^z, on which the Gelfond-Kuzmin work was based, was not appi 

priate for more general /?, and further progress awaited a new idea. T 

search for the latter was concluded successfully by Gelfond11 a: 

Schneider'8 independently in 1934. The arguments they discover 

were applicable for any irrational /? and, though differing in det£ 

both depended on the construction of an auxiliary function th 

vanished at certain selected points. A similar technique had been us 

a few years earlier by Siegel in the course of investigations on t 

t C.R. 189 (1929), 1224-8. t T6holcu Math. J. 30 (1929), 280-6. 

§ I.A.N. 3 (1930). 683 97. || D.A.N. 2 (1934), 1-0; T.A.N. 7 (1934), 623 

1 J.M. 172 (1934), 06 9. 

[ 9 1 2-2 



10 LINEAR FORMS IN LOGARITHMS 

Bessel functions.* Herewith Hilbert’s seventh problem was finally 

solved. 

The Gelfond-Schneider theorem shows that for any non-zero 

algebraic numbers at, a2, /?2, with loga1; loga2 linearly inde¬ 

pendent over the rationals, we have 

fix log oq + /?2 log a2 * 0. 

It was natural to conjecture that an analogous theorem would hold 

for arbitrarily many logarithms of algebraic numbers, and, moreover, 

it was soon realized that such a result would be capable of wide 

application. The conjecture was proved by the author* in 1966, and 

the demonstration will be the subject of the present chapter. 

Theorem 2.1. If cclt..., an are non-zero algebraic numbers such that§ 

log av ..., log an are linearly independent over the rationals, then 1, 

log av ..., log an are linearly independent over the field of all-algebraic 

numbers. 

The proof depends on the construction of an auxiliary function of 

several complex variables which generalizes the function of a single 

variable employed originally by Gelfond. Functions of several variables 

were utilized by Schneider1 in his studies concerning Abelian integrals 

but, for many years, there appeared to be severe limitations to their 

serviceability in wider settings. The main difficulty concerned the 

basic interpolation techniques. Work in this connexion had hitherto 

always involved an extension in the order of the derivatives while 

leaving the points of interpolation fixed; however, when dealing with 

functions of several variables, this type of argument requires that the 

points in question form a cartesian product, a condition that can 

apparently be satisfied only "with respect to particular multiply- 

periodic functions. The proof of Theorem 2.1 involves an extrapolation 

procedure, special to the present context, in which the range of inter¬ 

polation is now extended while the order of the derivatives is reduced. 

Refinements and generalizations will be discussed in the next chapter 

and applications of the results to various branches of number theory 

will be the theme of Chapters 4 and 5. 

t Abh. Preusa Akad. Wise. (1929), No. 1; of. oh. 11. 

t Mathematika, 13 (1966), 204-16; 14 (1967), 102-7, 220-8. 

§ Here the logarithms can take any fixed values. 

|| J.M. 183 (1941), 110-28. 
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2. Corollaries 

Before proceeding to the proof of Theorem 2.1, we record a few 

immediate corollaries. 

Theorem 2.2. Any non-vanishing linear combination of logarithms 

of algebraic numbers with algebraic coefficients is transcendental. 

In other words, for any non-zero algebraic numbers ccv ..., ccn and 

any algebraic numbers ft,ft, ..., ft with ft 4= 0 we have 

ft + 0iloS*i + - + ftlo8an 4= 0. 

This plainly holds for n = 0. We assume the validity for n < m, where 

m is a positive integer, and proceed to prove the proposition for n — m. 

Now if logoq, ...,logaOT are linearly independent over the rationale 

then the result follows from Theorem 2.1. Thus we can suppose that 

there exist rationale pv...,pm, with say pr 4= 0, such that 

p1\oga1 + ...+pm\ogam = 0. 
Clearly we have 

Prift + /?1 log «! + ... + ft log am) = ft + ftx log «! + ...+ ft log CCm, 

where fi'0 = prft0, ft = prft -Pjft (1 < j < m), 

and also ft0 4= 0, /?' = 0; the required result follows by induction. 

Theorem 2.3. eAtafi ...a£» is transcendental for any non-zero 

algebraic numbers au ..., ccn, ft, ft,..., ft. 

■ Indeed, if an+1 = eA> afi... a£» were algebraic, then 

ft log cc1+... + ft log an-log an+1 (= -ft) 

would be algebraic and non-vanishing, contrary to Theorem 2.2. 

There is a natural analogue to Theorem 2.3 in the case ft = 0: 

Theorem 2.4. a{i... is transcendental for any algebraic numbers 

av ...,<xn, other than 0 or 1, and any algebraic numbers ft,..., ft with 

1, ft,..., ft linearly independent over the rationals. 

For the proof, it suffices to show that for any algebraic numbers 

av...,<xn, other than 0 or 1, and any algebraic numbers ft.ft, 

linearly independent over the rationals, we have 

/?,logaj+ loga„ 4= 0; 
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in fact the theorem follows oil applying this with n replaced by n + 1 

and fln+i = — 1. The proposition plainly holds for n = 1; we assume 

the validity for n <m, where m is a positive integer, and proceed to 

prove the assertion for n = m. The result is an immediate consequence 

of Theorem 2.1 if loga1;..., log an are linearly independent over the 

rationals; thus we can suppose that there exist rationals pv ..., pm and 

numbers /?'• as in the proof of Theorem 2.2, with now /?0 = /?o = If is 
clear that if filt..., fim are linearly independent over the rationals, then 

so also are the /?'■, with j not 0 or r, and the theorem follows by induction. 

Finally, from particular cases of the above theorems, it is evident 

that n + log a is transcendental for any algebraic number a 4= 0 (which 

includes the transcendence of tt) and that e“ff+^ is transcendental for 

any algebraic numbers a, fi with /? =j= 0 (which includes the tran¬ 

scendence of e). 

3. Notation 

The remainder of the chapter is devoted to a proof of Theorem 2.1. 

We suppose that the theorem is false, so that there exist algebraic 

numbers fi0, filt .not all 0, such that 

A) + Al°g“i + —+A.log<*» = 0, 

and we ultimately derive a contradiction. Clearly one at least of 

Pi, fin is not 0 and, without loss of generality, we can suppose that 

fin 4= 0. Since the above equation continues to hold with /?'■ = —fijlfin 

in place of fijt we can further suppose, without loss of generality, that 

fin — — 1; we have then 

eAxxfi... ct^Si — CLn. (1) 

We denote by c, ct, c2,... positive numbers which depend only on the 

a’s, fi’s and the original determinations of the logarithms. By h we 

signify a positive integer which exceeds a sufficiently large number c as 

above. 

We note, for later reference, that if a is any algebraic number 

satisfying Ao0ia + aa-i + ...+A_d = 0, 

where A0,Ad are rational integers with absolute values at most A, 

then, for each non-negative integer j, we have 

(A0ay = Atf* + A^> a+ ... +A(J)_1ad~1 

for some rational integers A% with absolute values at most (2A)3'; this 

is an obvious consequence of the recurrence relations 

-Au.mAlJ p (0 < m < d,j > d). 
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where ACl^1> = 0. It follows that if d is the maximum of the degrees of 

a1;..., an,/?0, ■■■, fin-i ar*d ^av •••» , b0,..., bn_x are the leading coeffi¬ 

cients in their respective minimal polynomials, then 

{arccrfi (brfirfi =*% Vfifil (2) 
5=0 <=o 

where the afifi bffl are rational integers with absolute values at most c[. 

For brevity we shall put 

/m0.Vl(*0. • • • > *»-l) = (8/c)Z0)mo ... (S/&B_1)"'»-i/(a0, • • •, Zn-.fi), 

where/denotes an integral function and m0,mn_1 are non-negative 

integers. 

4. The auxiliary function 

Our purpose now is to describe the auxiliary function O that is funda¬ 

mental to the proof of Theorem 2.1; it is constructed in Lemma 2 

below after a preliminary result on linear equations obtained by 

Dirichlet’s box principle. Basic estimates relating to O are established 

in Lemma 3 and these are then employed for the extrapolation 

algorithm. Two further supplementary results are given by Lemmas 6 

and 7; the former exhibits a simple, but useful, lower bound for a linear 

form in logarithms, and the latter furnishes a special augmentative 

polynomial. It will be seen that the inclusion of the 1 in the enunciation 

of Theorem 2.1, which yields the algebraic powers of e in the corollaries, 

entails a relatively large amount of additional complexity in the proof; 

in particular the final lemma is required essentially to deal with this 

feature. 

Lemma 1. Let M, N denote integers with N > M > 0 and let 

uif (1 s: i s: M, 1 ^ N) 

denote integers with absolute values at most U (> 1). Then there exist 

integers x±,...,xN not all 0, with absolute values at most 

such that N 

2 ui}Xj = 0 (1 < i < M). (3) 
j=i 

Proof. We put B = [(NU)MI(-N~M>], where, as later, [x] denotes the 

integral part of x. There are (B + l)*v different sets of integers x1,...,xN 

with 0 ^ Xj < B (1 < j ^ N), and for each such set we have 

-Vfi Hy^WiB (1 < » < M), 
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where yt denotes the left-hand side of (3), and —Vi,Wi denote the sum 

of the negative and positive Uy(l^j^N) respectively. Since 

Vt + Wt < NU, there are at most (NUB +1)M different sets yx, ...,yM. 

Now (B + 1)N~M > (NU)M and so (5 + 1)-^ > (NUB + 1)M. Hence 

there are two distinct sets xx, ...,xN which correspond to the same set 

yv and their difference gives the required solution of (3). 

Lemma 2. There are integers p(A0,..., An), not all 0, with absolute 

values at most eh*, such that the function 

®(Zv;Zn-i) = 2 ••• 2 P(A0, ...,Aj4«e^Ao2oapZl...a5;iL-1lZ'‘-S 
A,=0 A„ = 0 

where yr = Ar + \nfir (1 < r < n) and L = [A2-1/(4ra)], satisfies 

.= 0 (4) 

for all integers l with 1 < £ < A and all non-negative integers m0,..., mn_x 

with m0 +... +mn_j ^ h2. 

Proof. It suffices, in view of (1), to determine the 2>(A0,..., A„) such that 

2 ... I, p(A0,...,An)^K,l)^ll-^l7T1-7^-T = 0 (5) 
A#=0 A„=0 

for the above ranges of l,m0,where 

<Z(A0,An>Z)= S „°)A0(A0-1)...(A0-/e0+1) 

On multiplying (5) by 

P' = («i —«JII6os’ —6S^il. (6) 

rnr /m \ 
writing yfr = £ („r)A 

/»r=0 \ /bv 

and substituting from (2) for the powers of arar and brfir which result, 

we obtain 

d—1 d— 1 d— 1 d—1 

2-2 2 ••• 2 A(s,fK'...4»^.../?h' = o, 
ij—0 8k e 0 Ik— i *® 0 

L L m, m,,.! 

where il(*,«)= 2 ... 2 2 ... 2 *>(A0. 
Aj-0 Ak —0/<t — 0 ftH • i*0 
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and q', q", q"' are given by 

4 = II 
r=l 

S' =”n {(^) 

4" = (™j Ao(Ao“l) - (A0-/i0+ 1) 

Thus (4) will be satisfied if the d2n equations A{s,t) = 0 hold. Now these 

represent linear equations in the p(A0,..., An) with integer coefficients. 

\ 
r| < 2mr. we have 

fir/ 

\q'\ sS II {4Z,_ Ar)'cir'} < 
1 

I/! < ^‘(Cair, 
r = l 

|g"'| < 2mo(A06re)/‘o(c1Ab)“o~AiJ*o_a> < (c3L)m«hL, 

and, by virtue of the inequalities 

(m0+ 1)... (mn_1 +1) < 2mo+-+™n-i < 2h\ 

it follows easily that the coefficient of p(A0,..., A„) in the linear form 

A(s,t), namely 

S ... E s'sY'» 
/i,=0 /i»-i>=0 

has absolute value at most U = (2c3L)ftacf'ft. Further, there are at 

most A(A2 + 1)“ distinct sets of integers l, m0,..., mn_1, and hence there 

are M < d2nh(h2 + l)m equations ^4(s, i) = 0 corresponding to them. 

Furthermore, there are N = (L +1)“+1 unknowns p(A0,..., An) and we 

haVG N > fc»-W4«»(*+i) > ^2»+i > 2rPnh{h2 +1)» > 2M. 

Thus, by Lemma 1, the equations can be solved non-trivially and the 

integersp(A0,..., An) can be chosen to have absolute values at most 

NU < h2n+2(2c3L)hl c%h < e*3 

if h is sufficiently large, as required. 

Lemma 3. Let m0,..., mn_1 be any non-negative integers with 

m0 + ...+mn_1 < h2, 

0.™n-SZ’ 
and let /(*) = (?) 
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Then, for any number z, we have |/(z)| < c£3+i|z| Further, for any 

'positive integer l, either f(l) = 0 or |/(?)| > cfl3~u. 

Proof. The function/(z) is given by 

p S ... £ p(A0,...,AJg(A0,A„»)<&'. 
Ao — 0 A»— 0 

where g(A0, An, z) is defined in Lemma 2 and 

P = (logax)™!... (lQgan_1)m»-i. 

We have 

k(A0,An,z)| < (c,L)mo\z\L £ °) = (2c7L)m»|z|i) 

|aflZ...a£nZ| < Cg|zl, iPyf1 ••• Tn-i1! ^ (c9L)mi+-+m»-i, 

and the number of terms in the above multiple sum is at most h2n+2; 

the required estimate for |/(z) | now follows by virtue of the inequalities 

L < h2, mQ+...+mn_1^h2, |p(A0,A„)| < eft3. 

To prove the second assertion, we begin by noting that the number 

/' = (P'jP)f(l), where P' is defined by (6), is an algebraic integer with 

degree at most d2n. Further, by estimates as above, we see that any 

conjugate of/', obtained by substituting arbitrary conjugates for the 

ar, fir, has absolute value at most and clearly the same bound 

obtains for P'jP. But iff #= 0, then the norm* of/' has absolute value 

at least 1 and so \fr\ ^ c ~ 

This gives the required result. 

Lemma 4. Let J be any integer satisfying 0 < J < (8ft)2. Then (4) 
holds for all integers l with 1 < l < h1+Jl(&n) and all non-negative integers 

m0,...,mn_1withm0+...+mn_1 < h2j2J. 

Proof. The result holds for J = 0 by Lemma 2. Let K be an integer 

with 0 < K < (8ft)2 and assume that the lemma is valid for 

J= 0,1 

We proceed to prove the proposition for J = K+ 1. 

t Tho prmluot of tho oonjugatoH; it in plainly a rational integer. 
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It suffices to show that for any integer l with RK < l ^ Rk+i an(l 

any set of non-negative integers to0,..., mn_l with 

mo + ••• +mn-x < SK+1. 

we have/(Z) = 0, where/(z) is defined by (7) and 

Rj = [hx+jKmi Sj = [h*l*J] (J = 0,1,...). 

By the inductive hypothesis we see that fm(r) = 0 for all integers r, m 

with 1 < r ^ Rk, 0 ^ m <S'R-+1; for clearly fm(r) is given by 

(d/8z0 + ... + S/dz^)1* Omo mn^(z0, V-1), 

evaluated at the point z0 = ... = zn_1 = r, that is by 

where the sum is over all non-negative integers with 

jo + -+ j«-i = m, and the derivatives here are 0 since 

m0 + ... + mn_\ +j0 +... +jn-1 ^ 2$k+i ^ $k- 

Thus f(z)/F(z), where 

F(z) = {(z - 1)... (z - Rk)}Ss+1, 

is regular within and on the circle C with centre the origin and radius 

R = RK+1hll(-8n\ and hence, by the maximum-modulus principle, 

d\F(l)\>Q\f(l)\, (8) 

where 6, 0 denote respectively the upper bound of |/(z)| and the 

lower bound of |F(z) | with z on C. Now clearly 0 > and, by 

Lemma 3, Q ^ c^+LR. Further, we have \F(l)\ ^ Rjsf+x+1 an(l, by 

Lemma 3 again, either/(Z) = 0 or \ f(l)\ > c^lfi~LR. But, in view of (8), 

the latter possibility gives 

(c5c6)ft3+ifi > (|A1/(8“))B*S*+1, 

and, since K < (8n)2 and 

LR sc h3+Msn) ^ 2k+3RkSk+1, 

the inequality is untenable if h is sufficiently large. Hencef(l) = 0, and 

the lemma follows by induction. 

Lemma 5. Writing <j>(z) = 0(z.z), we have 

< cxp(-A8“) (0 ^ j ^h8n). (9) 
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Proof. From Lemma 4 we see that (4) holds for all integers l and non¬ 
negative integers m0, satisfying 1 < l < X and 

m0+... +mn_x sC Y, 

where X — h8n and Y = [h2/2#“)*]. Hence, as in the proof of Lemma 4, 
we obtain = 0 for all integers r, m with 0<to< Y. 
It follows that <p(z)/E(z), where 

E(z) = {(« -1)... {z-X)}r, 

is regular within and on the circle T with centre the origin and radius 
R = Xhll(Sn\ and so, by the maximum-modulus principle, we have, 
for any w with \w\ < X, 

|0M| ^\E(w)\, 

where £ and S denote respectively the upper bound of |0(z)| and the 
lower bound of \E(z)\ with z on T. Now clearly 

\E(w)\ ^ (2X)*r, |S| ^ {\R)xr, 

and, by Lemma 3, £ ^ cJ£+LR. Hence we obtain 

|0(w)| < cf+LR{\hv^nYXY, 

and since LR < h8n+2 < 2f8n)2+1X Y, 

it follows that |0(w) | < e~xr. Further, by Cauchy’s formulae, we have 

where A denotes the circle \w\ = 1 described in the positive sense, and 
the expression on the right has absolute value at most fe~XT. The 
required estimate (9) follows at once. 

Lemma 6. For any integers tx,...,tn, not all 0, and with absolute values 
at most T, we have 

|log+tnlogaj > cxlT. 

Proof. Let ai (1 < j < n) be the leading coefficient in the minimal 
defining polynomial of oq or a,”1 according as tj > 0 or tj < 0. Then 

(i) = a^1'... ajj**1 (a*i...ajf- 1) 

is an algebraic integer with degree at most dn, and any conjugate of w, 
obtained by substituting arbitrary conjugates for <xx.a„, has 
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absolute value at most cx2- If w = 0 then 

Q = tx log ax+... + tn log an 

is a multiple of 2m, and in fact a non-zero multiple since log oq,..., log an 

are, by hypothesis, linearly independent over the rationals; hence, in 

this case, the lemma is valid trivially. Otherwise the norm of (0 has 

absolute value at least 1 and thus |a>| > But since, for any z, 

\ez — 1| < |z|e|z|, we obtain |<y| < |Q|e|Q|c^ and hence, assuming, as 

we may, that |Q| < 1, the lemma follows. 

Lemma7. Let R, Skbe positive integers and let or0,..., orB_1 be distinct 

complex numbers. Define cr as the maximum of 1, |tr0|,..., |cr1 and 

define p as the minimum of 1 and the |erf — erf with 0 ^ i < j < R. Then, 

for any integers r, s with 0 < r < i?, 0 ^ s < 8, there exist complex 

numbers wt (0 < i < RS) with absolute values at most (8<rjp)RS such that 

the polynomial rs-\ 
W(z) = 2 wiZj 

#=o 

satisfies = 0 for all i, j with 0 < i < R, 0 < j < S other than 

i = r,j = s, and Ws(crr) = 1. 

Proof. The required polynomial is given by 

where 

WM _ JL f (£-qv)8 mg „ 
W{z) [s\ )2mjCr (Z-z)U(£) C 

U(z) ={(z-ara)...(z-aR_x)}s 

and Cr denotes a circle described in the positive sense with centre crr 

and sufficiently small radius, less than, say, p and | z — rr,. | for z 4= crr. 

The proof depends on two alternative expressions for W (z). First, since 

the absolute value of the integrand multiplied by |£| decreases to 0 as 

|£| oo we have, by Cauchy’s residue theorem, 

W(z) = 
(z-ary U(z) 1 f (g-o>)8 

*! *1 Zmih)Cj&-z)U{Q ^ 

where Cp like Gr above, is a circle about cr- with sufficiently small 

radius. Clearly the sum over j is a rational function of z, regular at 

z = crr and, since V(z) has a zero at z = <rr of order S, it follows that 

H$(err) = 1 if j = s and 0 otherwise. 
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On the other hand, from Cauchy’s formulae we obtain 

= -1K 1 
() G-*)U(0 w 

where t = S — s — 1, and thus 

W{z) = ( 1)*—1 (s!)—1 U(z) Jjv(j0,.K-z)-^1, 

where the sum is over all non-negative integers j0, ■,ju-i with 

jo+ — +Js-i = and 

»(io»-.;«_!) = n (,Sf +f 
i=o \ h ! 
i=4=r 

Now jr+ 1 lies between 1 and 8 inclusive and so obviously W(z) is a 

polynomial with degree at most BS — 1. Further, we see that W(z), 

like U(z), has a zero at z = crl (i 4= r) of order S, and so Wj{cr^) = 0 for 

all j < S. Furthermore, it is clear that the typical factor in the product 

defining v has absolute value at most 2s+h-ip-s-U, and thus 

|»(jo.-> < (2/pp-«s+U-+^-i < (2/p)«s. 

On noting that the coefficients of (crr — z)-^-1 U(z) have absolute 

values at most (ar+ l)as’ and observing, in addition, that the number 

of terms in the above sum does not exceed 8R, it follows easily that the 

coefficients of W(z) have absolute values at most 

SR(<r+ 1)-*® (2/p)RS < (8 

and this completes the proof of the lemma. 

5. Proof of main theorem 

We proceed to show that the inequalities (9) obtained in Lemma 5 

cannot all be valid, and the contradiction will establish Theorem 2.1. 

We begin by writing S — L + 1, B = 8n, and noting that any integer 

i with 0 < i < BS can be expressed uniquely in the form 

i — Aq + +... + A n8n, 

where A0,..., A„ denote integers between 0 and L inclusive. For each 

such i we define , . 
^i = Ao. Pi=P(* 0.---.AJ, 

and we put fa = Ax log ax + ... + Aalog otn. 

Then clearly <j>{z) 
its -1 

= 2 Pi*'#*. 
i 0 

(10) 
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Further, from Lemma 6, any two rjrt which correspond to distinct sets 

Ax,..., An differ by at least c[lL; in particular, exactly R of the ^ are 

distinct, and we denote the different values, in some order, by 

tr0,..., crH_x. If or, p are defined as in Lemma 7, we have then cr < cuL 

and p > cx&L. 

Let now t be any suffix such that pt =f= 0, let s = vt, let r be that 

suffix for which \Jrt = crr, and let W(z) denote the polynomial given by 

Lemma 7. By the properties of W(z) specified in the lemma, we see that 

RS-l 

Pt = S i=o 

Further, by Leibnitz’s theorem, we have 

.RS-i us l r $ 1 

%{fi) = S j(j - 1) • • • (j - Vf+1) Wj = s Wj U-, (z”* evM) 
j —0 jf—0 laZ Jz = 0 

and thus from (10) we obtain 
RS-l 

Pt- S »*&(0). 
} = 0 

Now ItS < h2n+2 and so, from Lemma 5, it follows that (9) holds for all 

j with 0 < j < RS. Further, by Lemma 7, we have 

N < (8^)*® < (8c14L4)«« ^ cr+4- 

Hence, since |jot| > 1, we conclude that 

0 < log RS + civ h2n+i - h8n. 

The inequality is plainly impossible if h is sufficiently large and the 

contradiction proves the theorem. 
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LOWER BOUNDS 
FOR LINEAR FORMS 

1. Introduction 

Various conditions were obtained in Chapter 2 for the non-vanishing 

of the linear form 

A = #> + Alogax+ ... + Pn log <xn, 

where the a’s and /?’s denote algebraic numbers; in particular, it 

suffices if /?0 + 0, or if 1, ftx, are linearly independent over the 

rationals, assuming that the a’s are not 0 or 1. In the present chapter, 

quantitative extensions of the work will be discussed, giving positive 

lower bounds for | A] in terms of the degrees and heights of the a’s and 

/?’s; it will be recalled from Chapter 1 that the height of an algebraic 

number is the maximum of the absolute values of the relatively prime 

integer coefficients in its minimal defining polynomial. Theorems of 

this kind were first proved by Morduchai-Boltovskoj* in 1923, in the 

case n = 1, and by Gelfond* in 1935, in the case n = 2, ft0 = 0. A lower 

bound for |A|, valid for arbitrary n, was established in 1966, on the 

basis of the work described in Chapter 2, and a variety of improve¬ 

ments have been obtained subsequently. In particular, when the a’s 

and also the degrees of the /?’s are regarded as fixed, a result that is 

essentially best possible has now been derived.8 

Theorem 3.1. Let ccv ...,an be non-zero algebraic numbers with 

degrees at most d and heights at most A. Further, let /?„.ftn be 

algebraic numbers with degrees at most d and heights at most B (> 2). 

Then either A = 0 or |A| > B~c, where C is an effectively computable 

number depending only on n, d, A and the original determinations of the 

logarithms. 

The estimate for C takes the form C' (log A)K, where tc depends only 

on n, and C' depends only on n and d. In the case when /?0 = 0 and 

are rational integers, it has been shown that in fact the 

theorem holds with C — C'Q log Q, where Q = (log A)n; and moreover, 

f O.R. 176 (1923), 724-7. t D.A.N. 2 (1935), 177-82. 
§ Mai. Sbornik, 76 (1988), 304-19; 77 (1908), 423-30 (N. I. Foldman). 

f 22 ] 
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if it is assumed that the height of does not exceed 4), then 

£2 can be taken as log At... Iog^4n.t Still stronger results have been 

obtained in the special case, of considerable importance in applications, 

when one of the a’s, say an, has a large height relative to the remainder. 

Indeed it has been proved that if av ..., and an have heights at 

most A' and A(^ 4) respectively, then 

|A| > (B\ogA)-°loeA, 

where C > 0 is effectively computable in terms of A', n and d only.* 

Further, when /?„ = 0 and are rational integers, the bracketed 

factor log A has been eliminated to yield 

|A| > C-log^togB, 

which is clearly best possible with respect to A when B is fixed, and 

with respect to B when A is fixed.§ Furthermore, under the additional 

specialization = — 1, it has been shown that 

|A| > A-°e~eB 

for any e > 0, where now C depends only on A', n, d and e." As we 

shall see later, these results have particular value in connexion with 

the study of Diophantine problems. 

It will be noted that, from the case n — 1 of Theorem 3.1, we have 

|loga-/?| > B~° 

for any algebraic number a, not 0 or 1, and for all algebraic numbers /? 

with degrees at most d and heights at most B(^ 2), where C depends 

only on d and a; more especially we have 

> B~° 

for some G depending only on d. Estimates of the latter kind with, in 

fact, precise values for C were derived long before the general result. 

Indeed Feldman,11 extending work of Mahler,** obtained the first of 

these inequalities with C of order (dlog d)2, assuming that B is 

sufficiently large, and the second with C of order dlogd. Moreover, 

when /? is rational, some striking inequalities of the type 

\n-plq\ > q-™, 

t Acta Arith. 27 (1974), 247-52. 
J Diophantine approximation and its applications (Academic Press, 1973) pp. 1-23. 
$ Acta Arith. 21 (1972), 117-29. 
|| Acta Arith. 24 (1973), 33-0 f I.A.N. 24 (1960), 357-68, 475-92. 
ft J-M. 166 (1932), 118-50. 

3 BTN 
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valid for all rationals pjq (q ^ 2), were established by Mahler,1 and, 

more recently, by similar methods, values of C arbitrarily close to the 

conjecturally best possible d+1 were derived in connexion with 

approximations to the logarithms of certain rational a.i Several 

further estimates of this character, classically termed transcendence 

measures, are furnished by the results cited after Theorem 3.1. They 

imply, for instance, that, subject to the hypotheses of Theorems 2.3 or 

2.4, we have 
oafi. , Ot: @n — y\>H —C log log H 

for all algebraic numbers y with height at most H (4), where C 

depends only on the a’s, /?’s and the degree of y; in particular 

\e”-pjq\ > q-c log log q 

for all rationals pjq (q ^ 4), where c denotes an absolute constant, and 

this is the best measure of irrationality for e” obtained to date. 

We shall prove here only Theorem 3.1; the demonstrations of the 

other results are similar, though the underlying auxiliary functions 

are modified, the inductive nature of the argument is more complicated, 

and certain lemmas appertaining to Kummer theory are employed 

in the latter part of the exposition in place of the determinant that 

occurs here. The reader is referred to the original memoirs for details. 

Applications of the results to various branches of number theory will 

be discussed in subsequent chapters. 

2. Preliminaries 

We begin with some observations concerning the heights of algebraic 

numbers. First we note that if a is an algebraic number with degree d 

and height H then |a| < dH; for if a satisfies 

a0ad + a1ad~1 +... +ctd — 0, 

where the a} denote rational integers with absolute values at most H 

and a0 ^ 1, then either |a| < 1 or 

|a| =% |a0a| = |a1-fa2a~1 + ... +adard+1\ ^ dH. 

Secondly we observe that if a, are algebraic numbers with degrees at 

most d and heights at most H, then a/? and a + /? have degrees at most 

d2 and heights at most H', where log H'/log H is bounded above by a 

t Philos. Trans. Roy. Soc. London, A 245 (1953), 371-98; I.M. 15 (1953), 30-42. 
x Acta Arith. 10 (1904), 315 -23. 
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number depending only on d. For let a®, /?® denote the respective 

conjugates of a and [L Then aft and a + /? are zeros of the polynomials 

(ab)d2 n (a-a®/?«>), (abf2 U(x- a® - /?<»>) 
i,j i,j 

respectively, which clearly have integer coefficients and degrees at 

most d2. The zeros of the minimal polynomials of aft and a + ft are thus 

given by some subsets of the a®/?(,) and a®+/?(h and the leading 

coefficients divide (ab)d2. The assertion now follows on noting that the 

a®, have absolute values at most dH. 

For any integers k ^ 1, l ^ 0 we shall signify by v[l\k) the least 

common multiple of 1+ 1, + k. Further, for brevity, we shall write 

A(x; k) = (x+1)... (x + k)fk\, 

1 dm 
and we shall put A(x; k, l,m) = (A(x; k))1. 

The functions have the following properties: 

Lemma 1. When xisapositive integer thenalso (v(x;k))m A(x; k, l, to) 

is a positive integer and we have 

A{x; k,l,m) ^ 4!(*+fc>, v(x; k) ^ {c(x + k)/k}2k 

for some absolute constant c. 

Proof. First we observe that 

A(x; k, l,to) = (A(a;; k))1 S^+jj)... (z+jj)-1, 

where the summation is over all selections of to integers jj, from 

the set 1,..., k repeated l times, and the right-hand side is read as 0 if 

to > Id. Clearly x +jr divides v(x\ k) for each r, and since certainly 

A(x\ k) is a rational integer, the first part of the proposition follows. 

Further, we see that 

x + k\l lkl\ 2i(x+k)iid 
k ) \m) ’ 

and this gives the required estimate. 

To obtain the estimate for v, we write v(x; k) — v'v", where all prime 

factors of v', v" are < k and > k respectively. Since the exponent to 

which a prime p divides v' is at most log (x + k)/logp, we have 

logi/ < X) log (x + k) < c'klog(x + k)/logk, 

A(x; k, l,m) 
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where the summation is over all primesp < k, and c', like c, c", c"' below, 

denotes an absolute constant. Now we can assume that k > c" and 

that x > c"k for some sufficiently large c", for otherwise the desired 

conclusion would follow at once from the simple upper bounds (x + k)k 

and cx+k for v(x; k). Thus we see that 

v' < {c"'(x-\-k)jk}k. 

But clearly v" divides A(x; k), and this does not exceed (x + k)kjk\; 

the required estimate is now apparent. The exponent 2 can in fact be 

reduced easily to 1, which is best possible, but the refinement is not 

needed here. 

We prove next a simple lemma giving a special basis for the space of 

polynomials with bounded degree. 

Lemma 2. If P(x) is a polynomial with degree n > 0 and if K is a 

field containing its coefficients then, for any integer m with 0 < m < w, the 

polynomials P{x),P{x +1),P(x+m) and l,x, ...,xn~m~1 are linearly 

independent over K. 

Proof. The assertion is readily verified for n = 1. We assume the 

result for n = n' and we proceed to prove the validity for n = n' + 1. 

Suppose therefore that 0 < to < n' +1, that P(x) is a polynomial with 

degree n' + 1 and that 

R{x) = AaP{x) + A1P(x+1) +... + AmP(x+m) 

has degree at most n' — to for some elements Ay of K. We have 

m 

B(x) = (A0 + ...+Am)P(a: + m + l)+ 2 (A0 + A1+ ... +Ay)Q(a;+j), 
I=o 

where Q(x) = P(x) — P(x +1). But Q(x) has degree n and since 

P(x + m + 1) has degree Ji' + lwe see that A0+ ... +Am = 0. It follows 

from the inductive hypothesis that 

d Aj +... + Ay = 0 (0 ^ j^ to), 

and so A0 = ... = Am = 0, as required. 

Finally we establish the non-vanishing of a particular determinant; 

the result will play a similar role to Lemma 7 of Chapter 2. 

Lemma 3. If w0, are anV distinct non-zero complex numbers 
then the determinant of order kl with ira>* in the (i + i)-th row and (j + 1 )-th 

column, where j = r+sk (0 < r < k, 0 < s < l), is not zero! 

t Hrro t° = 1 for all t including i — 0. 
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Proof. The determinant £2 in question can plainly be expressed as a 

polynomial £2(w0,Wj_x) in the w’s with integer coefficients. We 

&(z) = Wi, ..., 

and we observe from the Laplace expansion of £2, taking minors 

formed from the first k columns, that £2(2) is a polynomial in z with 

degree at most k 

E ~j) = k2l - \k(lc + 1), 
? = 1 

and moreover that it has a factor We shall prove in a moment 

that it also has a factor (z — ws)kl for each s with 1 < * < Z. This gives 

£2(2) = CziW-V n1 {z-ws)k\ 
8 = 1 

where C is the coefficient of the highest power of z in £2(2). It is easily 

verified that C is the product of the Vandermonde determinant of 

order k with typical element (k(l— l) + i)3’, and the determinant of 

order k(l— 1) formed like £2, that is, with typical element iro)%a, where 

now 1 < s < l. The lemma follows by induction. 

To prove the above' proposition we begin by noting that the mth 

derivative £2m(z) of £2(2) is given by 

2£2'(m0, ...,TOfc_i,2), 

where the summation is over all non-negative integers ra0.TOfc_x 

with sum to, and £2'(to0, ..., mk_v z) is obtained from £2(2) by replacing 

the element in the (i + l)th row and (j + l)th column for j < k by 

ir+1(i —1)... (i — mr+ 1)2i_m't. 

It suffices now to prove that if to < k2 then the 2k polynomials 

1, x, ...ixk~x and 

7f+1{x— 1)... {x — mr+ 1) (0 ^ r < k) 

are linearly dependent; for then some non-trivial linear combination 

of the 2k columns of £2'(to0.mk-\> ws)> given by 

j < k and j = r + (s — 1) k, 

vanishes and so £2m(wg) = 0. To establish the linear dependence we 

arrange the degrees of the polynomials in ascending order, say 

% < n2 < ... < n2k, and we observe that their sum is 

\k(k - 1) -I- E (r + mr) — ~ 1) + m < 2kz-k. 
f-0 
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Thus we have nj < j — 1 for some j; this implies that there are j poly¬ 

nomials amongst the original set each with degree at most j —2, and 

these are certainly linearly dependent. The above argument clearly 

yields an explicit value for Q, but only the non-vanishing is required 

here. 

3. The auxiliary function 

We come now to the proof of Theorem 3.1 and we assume accordingly 

that <xlt..., an are non-zero algebraic numbers with degrees and heights 
at most d and A respectively. By C, c, cv c2,... we signify numbers, 
greater than 1, that depend only on n, d, A and the given determina¬ 

tions of the logarithms of the a’s. We suppose that /?0, are 

algebraic numbers with degrees and heights at most d and B (^ 2) 

respectively such that 

lA> + Alog«i + — +Al-iloga«-i-logan| < B~°, (1) 

for some sufficiently large C, and we proceed to show that there exist 

then rational integers &[,..., &^> not all 0, with absolute values at 
most c1; satisfying ,,, , ,,. A 

1 3 6 log <*! + ... + bn log <xn = 0. (2) 

An inductive argument will then complete the proof of the theorem. 

The subsequent work rests on the construction of an auxiliary 

function analogous to that obtained in Lemma 2 of Chapter 2. We 

signify by k an integer exceeding a sufficiently large number c as above, 

and we write 

h = [log (kB)], L_x = h - 1, L = L0 = ... = Ln = [0-VW]. 

We adopt the notation of Chapter 2 with regard to partial derivatives. 

Lemma 4. There are integers ^(A^,..., Am), not all 0, with absolute 

values at most c2fc, such that the function 

L—i Ln 

<]>(Zo; • • • > Zn-1) = S • • ■ S Z>(A-1.AJ 
A—i—0 An=0 

x (A(z0 + A_1;^))A°+1eA«A2oa:}'liSl... a^y12”-1, 

where yr = Ar +A„/?r (1 < r < n), satisfies 

|®»..mn4l.01 <B-i° (3) 

for all integers l with 1 < l < h and all non-negative integers ra0,..., mn_1 

with m0 + ... + < k. 
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Proof. We determine thep{A_1;An) such that 

S • ■ • 2 y (A_1, • • •, A J g(A_!, A0, A„, 0 at1 ■ ■ ■ afc1 yf1... y^i1 = 0 
A_, = 0 A„=0 

(4) 
for the above ranges of l and to0, mm_1, where 

Wo / Y)ljr\ 

q{A_i,A0,A„,2) = S ( WA(3 + A_x; ^A0 + l,/<o)(An/?o)ro»_''‘0. 

We shall verify subsequently that (4) implies (3). Following the proof 

of Lemma 2 of Chapter 2, and defining the a’s and &’s and P' as there, 

we derive the same equation involving summation over sv ...,sn,t0, 

tn_i as arises there, but with 

Xj — i Ln Win — t 

A(s,t) = s ... S S ... S 2>(A_i,...,An)2VY", 
A_! — 0 An — 0 fi9—0 fin—i — 0 

where now 

4" = (™j/*0! A(l + A_i; h,A0+l,p0)A^bfrb<y-^ 

and the Uff have absolute values at most (2B) K Thus we conclude that 

(4) will be satisfied if the d2n equations A(s,t) = 0 hold. Now these 

represent M ^ d2nh(k + 1)™ linear equations in the 

N = (L_t +1)... (Ln + 1) 

unknowns p(A_1;..., An). Further, Lemma 1 shows that, after multi¬ 

plying by (r(0; 31i))m*, the coefficients in these equations will be 

rational integers. Furthermore we have 

A(Z +A_x; ^,A„+ 1,/Iq) ^ Cg"*, 

and, since kB ^ eA+1, we see that 

\q'\ ^ c±h, \<f\ < 

\q"'\ ^ 2mo(/i0bn)i‘o(2BAn)mo-i‘ocgh ^ e2Am»cgh. 

Since also r(0; 3h) ^ c\, it follows that the coefficients have absolute 

values at most V = c%k. NowiY > hkn+i > 2M and hence, by Lemma 1 

of Chapter 2, the system of equations A (s, t) = 0 can be solved non- 

trivially and the integers p(A_x,..., An) can be chosen to have absolute 

values at most NU < c\k. 

It remains only to verify that (4) implies (3). Now the left-hand side 

of (4) is obtained from the number on the left of (3), omitting modulus 

signs and a factor 
V = (logai)™!... (logan_x)”^ i, 
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by substituting an for a'n = ePoaf1... From (1) we have 

\\oga'n-\ogan\ < B~c, 

for some value of the first logarithm and since, for any complex 

number 2, \ez—1| ^ \z\ e1*1, we obtain 

\cc^-ccn\<B-&. (5) 

Also we have \&hKnl—&nnl\ < c*A\tx'n — a.m\, 

and estimates similar to those employed above show that 

|-P| ^ c|, |g(A_1,A0,AB,Z)| < 4£+m»),t) \yr\ < e2'*, \a£rl\ < cf0\ 

Thus we see that the number on the left of (3) is at most Nc\kB~%c. 

But clearly N < e2hn and h < log (kB), and hence (3) follows if 

G > c12klogk. 

Lemma 5. Let m0,..., mm_1 be any non-negative integers with 

m0 + ... + mn_1 < k, 

a™l kt f(z) = .mn i(2, ...,2). 

Then, for any number z, we have |/(z) | < cjj+£M. Further, for any integer l 

with h < l < hkSn, either \f{l)\ < B~ic or 

1/(01 > (6) 

Proof. The function f(z) is given by 

P £f ... 2 P(A-!.Am)^(A^,A0,Am,2) 
A-! = 0 a»=o 

x A'aj'i*... ... y^-i, 

where P and q(A_lt A0, Xn, z) are defined as in Lemma 4. Now (5) implies 

that \<x.'nz\ < eg and clearly 

< cf^l. 

Furthermore, since \z + A_x| < [|2|] + h, 

we deduce from Lemma 1 that 

|A(2 + A_1; h, A0 + l,/t0)| < c#M+» 

This gives |g(A_1; A0, Am, z)| < e2Am«c£<|2l+,l), 

and the required estimate now follows easily as in the latter part of the 

proof of Lemma 4. 
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To prove the second assertion, we begin by notingthatthe expression 

on the left of (4), say Q, is an algebraic number with degree at most d2n. 

Further, by estimates similar to those given above, it is readily verified 

that each conjugate of Q, obtained by substituting arbitrary con¬ 

jugates for the a’s and /?’s, has absolute value at most c\k+Ll. Further¬ 

more, from Lemma 1, we see that on multiplying Q by 

(v(l;2h))^P’ ^ (c19ljh)^c^, 

one obtains an algebraic integer. Hence we conclude that either 

e = 0°r \Q\> (l/A)-«*A"V 

Since to0 < k, the number on the right of the last inequality exceeds 

the right-hand side of (6) for some c14. Further, as above, we deduce 

easily from (5) that P_1/(0 differs from Q by at most But if 

l ^ hk8n and C > k8n+2, then this is at most \\Q\, and hence, if Q 4= 0, 

we obtain \f{l)\ > \\PQ\, which gives (6). 

Lemma 6. Suppose that 0 < e < c-1 for some sufficiently large c. 

Then, for any integer J with 0 < J < Sn/e, (3) is satisfied for all integers l 

with 1 < l ^ hkeJ and all non-negative integers m0,mn_1 with 

mQ +... + mn__x < &/ 2J. 

Proof. The lemma holds for J = 0 by Lemma 4. We suppose that K is 

an integer with 0 < K ^ (8n/e) — 1 and we assume that the lemma 

has been verified for J = 0,1 We proceed to prove the pro¬ 

position for J = K + 1. 

It suffices to show that for any integer l with RK < l ^ i?i:+1andany 

set of non-negative integers mQ,...,mn_1 with to0 +... +mn_l ^ SK+l, 

we have \f(l)\ < B~i°, where/(z) is defined as in Lemma 5, and 

Rj = [hk*J], Sj = [k/2J] (J = 0,1,...). 

From our inductive hypothesis we deduce, as in Lemma 4 of Chapter 2, 

that I fnH < nkB~l° (l^r^RK,0^m< SK+1). (7) 

We write, for brevity, 

where S = SK+1, and we denote by T the circle in the complex plane, 

described in the positive sense, with centre the origin and radius 

R = RK+lkmnK By Cauchy’s residue theorem we have 

f(z)dz f(l) 1**|, fm(r)r (z—r)m dz f(*)dz * fJr)C (lz 

2niJr(z — l)P(z) F(l) 2ni r-im-o ml Jr,(z- l)P(z)’ (8) 
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where Tr denotes the circle in the complex plane, described in the 

positive sense, with centre r and radius | ; for the residue of the pole 

of the integrand on the left at z = r is given by 

1 ds ({z-r)s+1f(z)} 

8\dzs\ (z — l) F(z) )* 

evaluated at z = r, and the integral over Tr on the right is given by 

2ni ds~m I (z — r)s+1 \ 

(8 — to) ! dzs_m |(2 -1) F(z) j’ 

again evaluated at z = r, and (8) now follows by Leibnitz’s theorem. 

Since, for z on Tr, 

\(z — r)mJF(z)\ < {\{RK-r- 1)! (r-2)!}^-1 < 8kks(Rk\)~s-1, 

we deduce from (7) that the absolute value of the double sum on the 

right of (8) is at most 

Rk(8+ 1) 8B*S+1 

Further, for RK < l < RK+1, we have 

\F(l)\ = {(Z-l)!/(Z-i^-l)!f+i < (2^.^!)s+i, 

and, since RK+1 < hk?n, we see that if (6) holds then |/(Z)J > B~i°, 

whence the number on the right of (8) exceeds \ \f(l)/F(l)\. We proceed 

to show that the assumption that (6) is valid leads to a contradiction. 

Let 6 and 0 denote respectively the upper bound of |/(2)| and the 

lower bound of |F(z)| with z on T. Since 212 — Z| with z on T exceeds the 

the radius of T, we obtain from (8) 

±6\F{1)\ > © 1/(01- (9) 

Now clearly we have 0 ^ {\R)R^S+1) and thus 

log(0 |F(1)|-!) ^ RK{8+ 1)log (i*W»>). (10) 

Further, from Lemma 5, we see that 6 < Cj|+z,Rand so, by virtue of (6), 

log(<9|/(?)!-1) < c25{LR+hIc\og{RK+1/h)}. (11) 

But the number on the right of (10) is at least 

2 ~K~a n~1hkeK+1 log k, 

and that on the right of (11) is at most 

cuhk{e{K + 1) log k + £«<A'-U)-V(8»)) 
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If e-1 > c > 27mc25 and k is sufficiently large, the estimates are plainly 

inconsistent. The contradiction implies the validity of (3) and the 

lemma follows by induction. 

Lemma 7. For all integers l with 0 < l < hkin we have 

... S p(A_1; ...,AJ (A(A_! + l/k; A))A»+1 = o. 
A_, = 0 An = 0 

(12) 

Proof. From Lemma 6 we see that (3) holds for all integers l with 

1 < l ^ X and all non-negative integers m0,mn_1 with 

m0+...+mn_1 ^ Y, 

where X = [M7n], Y = k], 

and Cjj = 28nK It follows as in the proof of Lemma 6 that 

f(z) = a>(z,...,z) 

satisfies |/TO(r)| < nkB~i° (1 ^ r < X, 0 < m < Y). (13) 

Now let l be any integer with 0 ^ l ^ hkin and define 

X{z) = {{z-l)...(z-X)}Y+\ 

with the proviso that the factor (z—l/k) is excluded if Ijk is an integer. 

Denoting by T the circle in the complex plane, described in the 

positive sense, with centre the origin and radius R = Xklil8n\ we deduce 

from Cauchy’s residue theorem 

J_ f f(z)dz = /(*/*) 1 *, £ fjr) f (z — r)mdz 

2mJr{z — llk)E(z) E(ljk) 2nir=lm^0 ml Jr.^ — l/k)E(z)' 

where the dash signifies that r = l/k, if an integer, is excluded from the 

summation, and Tr denotes the circle in the complex plane, described 

in the positive sense, with centre r and radius 1 /(2k). Since, for z on Tr, 

\{z-r)m/E(z)\ < {(8/fcX)-1(Z-r-l)!(r-2)!}-^-1 < 83*F(X!)-r-i, 

it follows from (13) that the absolute value of the double sum on the 

right of the above equation is at most 

X(Y +1) S^xij-r-i.B-io 

Further, by virtue of Lemma 5, we have, for anyzonT, \f(z)\ < c\$+LR, 

and it is clear that \E{z)\ ^ (^yx-iXF+i), 

\E(l/k)\ < (2X)*<r+D < 8^+1>(Z!)F+1. 
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Thus we obtain 

\f{llk)\ < c^+LR{8~W^)-x^ + B-i°, 

and, since Lkt;{in) < k, we deduce easily that the number on the right 
is at most e~XY. 

Now clearly the left-hand side of (12), say Q, is an algebraic number 

with degree at most (dk)n, and each conjugate has absolute value at 

most c\?\ Further, it is readily verified that on multiplying Q by 

(Oj...an)uA2A<i+1) 

one obtains an algebraic integer; for certainly the denominator of 

either Jt^/M or A(X_1 + l/k; h), expressed in lowest terms, is free of a 

given prime according as p does or does not divide k. Thus, if Q 4= 0, 

we have |Q| > c^hKtn. But it is easily seen from (5) that 

|Q-fm\ < 

whence \f{l/k)\ > \ |Q|. The estimate for |Q| given above is plainly 

inconsistent with the upper bound e~XT for \f(l/k)\ obtained earlier, 

and thus we conclude that Q = 0, as required. 

4. Proof of main theorem 

First we observe that, by virtue of Lemma 2, the polynomials 

(A(A_1 + a:; h))'lo+i (0 ^ A__i ^ L_0 ^ A0 ^ L0) 

are linearly independent over the rationals. Thus, on writing 

Lf I P(A_ .AJ (A(A_! + x; h))*o+i = | p'(X', Xlt..., A J 
A—1=0 A0 = 0 A' = 0 

where L' = h(L+ 1), we see that one at least of the L" = (L1 +1) (L+ l)m 

numbers p’(X', A1?Xn) is not 0. Now (12) can be written in the form 

L’ i, 

s s • 
A'=0 A,=0 

2 i>'(A', Alf..., AJ KAl'fe • • • = 0, 
A„=0 

and, by Lemma 7, the equation holds in particular for 0 ^ 1 ^ L". It 

follows that the determinant of order L”, given by the terms involving 

l only, vanishes. But the determinant is of the kind indicated in 

Lemma 3, and thus we conclude that 

a\lik ... oc%,lk = a*ilk... a^nlk 
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for some distinct sets Ax,..., Aft and A^.A^. This gives 

b{ log ax + ... + b'n log an = {2ni)jk 

for some rational integer;', where!)'= Ar — A'. Clearly we have | &' | ^ 2L, 

and since L ^ it follows that the number on the left has 

absolute value less than 2nk. Hence we conclude that j = 0, and so 

(2) holds, as required. 

The proof of the theorem is now completed by induction. Suppose 

that /?0, . ..,/?n are given as in the enunciation and that 0 < | A | < B~2C 

for some sufficiently large C. Then one at least of is not 0, 

and we shall assume that in fact fin 4= 0. By the preliminary observa¬ 

tions in §2, we see that (1) holds with /?3- (1 < j < n) replaced by 

Pj = - fijWn and further that the /?'• have degrees at most d2 and heights 

at most B' < Bc for some c depending only on d. Hence we conclude 

that (2) holds for some 6^,..., as indicated in §3. Now if 6' =1= Owehave 

0 < |A'| < cxB~c, 

where A! is obtained from A by replacing /?;- with 

/?3" = b’J.j-b'^r (0 ^j<n), 

b'0 being defined as 0. Further, the observations in § 2 show that /?" has 

degree at most d2 and height at most B" ^ Bc for some c = c(n, d,A). 

Furthermore we have /?" = 0. But the theorem is plainly valid for 

n = 0, and if we assume that it holds for fewer than n logarithms then 

the above shows that it will also hold for n logarithms. This establishes 

the result. 

It will be noted that the inductive argument would not be needed if 

logaq.logctn were linearly independent over the rationale, and 

moreover Lemma 7 would not be required if ax,..., an were multipli- 

catively independent. 
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DIOPHANTINE EQUATIONS 

1. Introduction 

Diophantine analysis pertains, in general terms, to the study of the 

solubility of equations in integers. Although researches in this field 

have their roots in antiquity and a history of the subject amounts, 

more or less, to a history of mathematics itself, it is only in relatively 

recent times that there have emerged any general theories, and we 

shall accordingly begin our discussion in 1900 by referring again to 

Hilbert’s famous list of problems. 

The tenth of these asked for a universal algorithm for deciding 

whether or not a given Diophantine equation, that is, an equation 

f(xl.xn) = 0, where/denotes a polynomial with integer coefficients, 

is soluble in integers xv ...,xn. Though Hilbert posed his question in 

terms of solubility, there are, of course, many other sorts of informa¬ 

tion that one might like to have in this connexion; for instance, one 

might enquire as to whether a particular equation has infinitely 

many solutions, or one might seek some description of the distribution 

or size of the solutions. In 1970, Matijasevic,1* developing work of 

Davis, Robinson and Putnam,1 proved that a general algorithm of 

the type sought by Hilbert does not in fact exist. A more realistic 

problem arises, however, if one limits the number of variables, and for, 

in particular, polynomials in two unknowns our knowledge is now 

quite substantial. 

A full account of the early results in this field is furnished by 

Dickson’s celebrated History of the theory of numbers; here references 

are given to a diverse multitude of Diophantine problems that were 

investigated by a wide variety of ad hoc methods mainly during the 

last two centuries. The first major advance towards a coherent theory 

was made by Thue§ in 1909 when he proved that the equation 

F(x, y) = m, where F denotes an irreducible binary form with integer 

coefficients and degree at least 3, possesses only a finite number of 

solutions in integers x, y. Thue established the result by way of his 

f D.A.N. 191 (1970), 279-82. t Ann. Math. 74 (1961), 426-36. 
§ J.M. 135 (1909), 284-306. 

T 36 1 
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fundamental studies on rational approximations to algebraic numbers; 

on writing the equation in the form 

aix-^y)... (x-any) = m, 

one sees that one of the zeros a,o£F(x, 1) has a rational approximation 

xjy (y > 0) with \a — xjy\ < c/yn for some c depending only on F and m, 

and Thue showed that this is impossible if y is sufficiently large.1' 

Thue’s work was much extended by Siegel1 in 1929; Siegel proved that 

the equation f(x, y) = 0, where / denotes a polynomial with integer 

coefficients, has only a finite number of solutions in integers x, y if the 

curve it represents has genus 1 or genus 0 and at least three infinite 

valuations; otherwise the curve can be parameterized and there are 

then infinitely many so-called ‘ganzartige ’ solutions, that is, algebraic 

solutions with constant denominators. Siegel’s work depended upon, 

amongst other things, an improved version of Thue’s approximation 

result which he obtained in 1921,§ and the famous Mordell-Weil 

theorem,11 proved in 1928, on the finiteness of the basis of the group of 

rational points on the curve. The work of Thue and Siegel satisfactorily 

settles the question as to which curves possess only finitely many 

integer points and, moreover, it yields an estimate for the number of 

points when finite. But it throws no light on the basic Hilbert problem 
as to whether or not such points exist and, even less therefore, does it 
provide an algorithm for determining their totality; for the arguments 

depend on an assumption, made at the outset, that the equation has 

at least one large solution, and this is purely hypothetical. Another 

proof of Thue’s theorem, under a mild restriction, was given by 

Skolem1 in 1935 by means of a p-adic argument very different from 

the original, but here the work depends on the compactness property 
of the j5-adic integers and so is again non-effective. 

Our purpose here is to apply the work of Chapter 3 to effectively 

resolve a wide class of Diophantine equations. In particular we shall 

treat the Thue equation F(x, y) = m defined over any algebraic 

number field, the famous Mordell equation y2 = xs + k, to which, 

incidentally, there attaches a history dating back to Bachet in 1621, 

and we shall obtain an effective algorithm for determining all the 

integer points on an arbitrary curve of genus 1. Our theorems will be 

proved in an essentially qualitative form, but it will be apparent that 

f Seo Chaptor 7. 
§ M.Z. 10 (1921), 173-213. 
f M.A. Ill (193S), 399 424. 

t Abh. Preusa. Akad. Wiaa. (1929), no. i. 
|| Acta Math. 53 (1928), 281-315. 
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they can be adapted to yield explicit bounds for the sizes of all the 

solutions of the equations. A summary of quantitative aspects of the 

work is given in the last section. 

2. The Thue equation 

Let K be an algebraic number field with degree d, let als..., an be n ^ 3 

distinct algebraic integers in K, and let /t be any non-zero algebraic 

integer in K. We prove: 

Theorem 4.1. The equation 

(X-a.iY)...(X-<xnY) =fi 

has only a finite number of solutions in algebraic integers X, Y in K and 

these can be effectively determined. 

We define the size of any algebraic integer 6 in K as the maximum 

of the absolute values of its conjugates, and we signify the size of 6 

by ||0||. With this notation, we shall in fact show how one can obtain 

an explicit bound for [|X|| and ||T|| for all X, Y as above. The bound 

can be expressed in terms of d and the maximum of the heights of 

a1( and some algebraic integer generating K; we shall denote 

by Ci, c2,... positive numbers that can be specified in terms of these 

quantities only. We shall assume that K has s conjugate real fields 

and 21 conjugate complex fields so that d = s + 2t; further we shall 

signify by 0(1).6{d) the conjugates of any element 6 of K, with 
0(1),..., 0{s) real and 6{s+1\ ..., 6{8+t'> the complex conjugates of Qts+t+i)^ , 

frd) respectively. The subsequent arguments rest on the well-known 

result, dating back to Dirichlet, that there exist r = s +1 — 1 units 

fix,..., rjr in K such that 

|log|^||<Ci (1 ^i,j<r) 

and | A j > c2, where A denotes the determinant of order r with 

log | | in the ith row and jth column/ 

We suppose now that X, Y are any algebraic integers in K satisfying 

the given equation and we write, for brevity, 

fii = X-at Y (1 ^ i ^ n). 

We denote by Nfii,the field norm of /?(and we put mi = so that 

... mn = |lV/t|. We proceed first to show that an associate yi of /?f 

f Cf. Hocko (Bibliography). 
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can be determined such that 

lioglrPII <c3 (! (1) 

This follows in fact from the observation that every point P in r-dimen- 

sional Euclidean space occurs within a distance c4 of some point of the 

lattice with basis 

(1°g|7i1)|.---.1og|#|) (1 <i^r). 

On taking P as the point 

(log I/^l. •••.log |/?!r)|), 

we deduce that there exist rational integers bn,..., bir such that 

Yi = fiiVlil--Vrir (2) 

satisfies (1) for 1 < j < r, with c4 in place of c3, and since 

|r?+t)l = IrfI (s<j<s+t), 

the same holds for 1 < j < d except possibly for j = s + t and j = 5 + 21 

(only one of which exists if t = 0). But we have 

Ir?5 ... r^l = m<> |JV/e| < c5, 

whence (1) holds for all j, as required. 

Now let Ht = max \btj\ and let l be a suffix for which Hx = max/Zj. 

The equations 

log \yPlflP\ = &<ilog |#| +... + birlog \v?\ (1 < j < r) 

serve to express each number Af>y as a linear combination of the 

numbers on the left with coefficients given by cofactors of A, and thus 

the maximum of the absolute values of these numbers exceeds c6IIt. 

Let the maximum be given by j = J. Then from (1) we have 

llogl^ll = |log \fiiJ)lyi7)\ + log |yiJ)11 > c6/^-c3, 

and, since ... it follows that 

log 1^1 <-(Cgi^-Ca —logm^d-l) 

forsome^. Thus, ifiij > c7, wehavefor some h. Further, 

SinCe 

we obtain > c9 for some k =f= l. We take j to be any suffix other 

than k or l\ this exists since, by hypothesis, n > 3. 

4 BTN 
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We may now, for simplicity, omit the superscript h and assume that 

aih) = ai> P\h> = Pi- From the identity 

(afe ~ ai) Pi + (a?— aj) Pk + iai ~ ak) Pi = 

we obtain ... — a = (o, 

where bs = blas-bjs (1 ^ s ^ r), 

a = («j-«i)yjfc ^ = (ak — ai)Pl7k 

K--gz)y/ {^k-^i)PkJi 

On noting that, for any complex number z, the inequality Jes — 11 < \ 

implies that < 4|f-l|, 

for some rational integer b, we deduce easily, on taking 

2 = b1logi}1+ ...+brlog?/r-loga, 

where the logarithms have their principal values, that, if \o)/a\ < 

then |A| < 4 |w/a], where A = z — blog (— 1). Clearly w =# 0 and so also 

A =|= 0. Further we see that |6-| ^ 2Ht for all j, and so the imaginary 

part of 2 has absolute value at most nB, where B = 4rHv Thus we 

have |6| ^ B, and certainly \b}\ ^ B. Furthermore, from the estimates 

for /?;. = /?jf) and $ = given above, we see that, if Hx > c10, then 

4|w/a| < cn\Pi/pk\ < e^B. 

But 5/1( ...,i)r and a have degrees at most d, and their heights are 

bounded above by a number c13. Hence Theorem 3.1 gives |A| > B~° 

for some G as above, and from this and our estimate |A| < e~cnB we 

conclude that_B < c14, whence Ht < c15. It follows from (1) and (2) that 

IIAII < < Cl7. 
and now the equations 

g _ g2Pi ~ aiA y = Pi~P% 

a2 — ax ’ a2 — ax 

and their conjugates clearly imply the validity of Theorem 4.1. 

3. The hyperelliptic equation 

As in § 2, we signify by K an algebraic number field with degree d. We 

suppose that a1, ...,an are n ^ 3 algebraic integers in K with, say, 

a1( a2, a3 distinct, and we prove: 
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Theorem 4.2. The equation 

Y* = (X-ch)...(X-a%) (3) 

has only a finite number of solutions in algebraic integers X, Y in K and 

these can be effectively determined. 

We shall establish Theorem 4.2 from Theorem 4.1 by a method of 

Siegel,! and again it will be clear that the arguments enable one to 

furnish explicit bounds for ||X|| and || F||. The conclusion of Theorem 

4.2 plainly remains valid if a non-zero factor in K is introduced on the 

right of (3), and thus the theorem covers, in particular, the elliptic 

equation _ aa.3 + ^ + + 

where all quantities signify rational integers. In this case, however, 

the result can be derived from Theorem 4.1 by a readier method, due 

to Mordell, involving the theory of the reduction of binary quartic 

forms.1 

Suppose now that X, Y are non-zero algebraic integers in K 

satisfying (3). We show first that there exist algebraic integers 

£,•» Vj> U = 2>3)in K with 

= (4) 
max(||£jll> Ill'll) <ci- 

where cx, like c2,c3, ....denotes a positive number specified as in §2, 

that is, depending only on d and the maximum of the heights of 

alt ...,am and some algebraic integer generating K. For simplicity we 

write a = ap and we observe that, by virtue of the ideal equation 

[r2] = [X-a1l...[X-a,l], 

we have [X—a] = ah2 

for some ideals a, b in K, where a divides 

II 
<=M 

Further, there exist ideals a', b' in the ideal classes inverse to those 

of a, b respectively with norms at most c2, and clearly aa' and a'b'2 

are principal ideals; the latter are therefore generated by algebraic 

integers £', rf in K with 

|W£'| < c2Na, \Ny'\ ^ c| 

t .7. London Math. Soc. I (1926), 66-8. 
j ./. London Math. Soc. 43 (1968), 1-9. 

4-2 
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Furthermore, since Na < n n[* — a] < c3, 
i + ) 

it follows easily, as in the derivation of (1), that there exist associates 

£", r)" of £', rj' respectively satisfying 

max(l|r||, h'||) < c4. 

Now 66' is principal and is therefore generated by some algebraic 

integer f' in K. Hence from the equation 

(a'6'2)[X-a] = (aa')(66')2 

we obtain X — a = e(£"/Y') £'2, 

where e denotes a unit in K. By Dirichlet’s theorem there exists a 

fundamental system el5er of units in K satisfying 

max(||ei||,...,||er||) < c5, 

and we have e = pe{ i ...el' 

for some rational integers jlt ...,jr and some root of unity p; it is now 

clear that the numbers £, rf, £ given by 

£"pefi... ep, rj", ... ei(jr-ir) 

respectively, where j - = 0 or 1 according as j{ is even or odd, have the 

required properties. 

On eliminating X from (4) we obtain three equations of the form 

°”2 £f — °3 £f = a3 — a2> 

where {j = 1,2,3). Further, on writing 

fix = 

for any choice of the square roots, and defining /?2, /?3 similarly by 

cyclic permutation of the suffixes, we have 

/?l+/?2+A = (5) 

Now /?! is a non-zero element of the field generated by erf and erf over K ; 

further, on multiplying by S = one obtains an algebraic integer 

with field norm having absolute value at most cg. It follows easily, as 

above, that = /?Je? for some unit e4 in the field and some associate 

with ||/?i|| < c7; and, after permutation of suffixes, the same holds 

for /?2, /?3. Thus (5) gives 

+/^2ft2 + ^3e3 = 0, 
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and, on multiplying by fi'22/e|, this becomes a Thue equation 

xa — Ay3 = /i, 

where x = fi'2 e2/e3, y = eje3. 

Hence, by Theorem 4.1, ||a;|| and |[y|| are at most c8, and it remains only 

to show that ||X|| and || F|| are likewise bounded. 

Fixing the choice of the sign of <r|, one can plainly select the sign of 

<rf in /?3 so that |e3| < c9. Then the bound \y\ < c8 established above 

gives le^ < c10, whence, since |0| > cn, we obtain \^\ < c12. But this 

holds for either choice of the sign of <rf and thus we conclude that both 

|£2| and |£3| are at most c13. It is now apparent from (4) that \X\ < c14; 

on commencing with the equations conjugate to (3) we derive the same 

bound for each conjugate of X, and the theorem follows. 

4. Curves of genus 1 

Let f{x,y) be an absolutely irreducible polynomial with integer 

coefficients such that the curve/(a;, y) = 0 has genus 1. We prove: 

Theorem 4.3. The equation f(x,y) = 0 has only a finite number of 

solutions in integers x, y and these can be effectively determined. 

As mentioned in § 1, the first part of the theorem was initially 

established by Siegel in 1929, but his method of proof was ineffective. 

The argument we shall give here, which is based on a birational 

transformation that reduces the equation to the canonical form con¬ 

sidered in Theorem 4.2, provides an effective and simpler proof of 

Siegel’s theorem in the case of curves of genus 1; but it does not seem 

to extend easily to curves of higher genus. 

We shall denote by Q, Q(x) and K respectively the field of all 

algebraic numbers, the field of rational functions in x with coefficients 

in Q, and the finite algebraic extension of Q(x) formed by adjoining 

a root of f(x,y) — 0. By the Riemann-Roch theorem, there exist 

rational functions X2 on the curve with orders —2,-3 respectively 

at some fixed infinite valuation, say Q, of K, and with non-negative 

orders at all other valuations of A"; moreover, one can effectively deter¬ 

mine the algebraic coefficients in their Puiseux expansions. We now 

observe, following Chevalley, that the seven functions 1, Xlf X2, Xf, 

X|, Xf, X1X2 have poles of order at most 6 at Q and so, by the 

Riemann-Roch theorem again, they are linearly dependent over Q. 
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Let pv ...,p7 be the respective coefficients in the linear equation 

relating them; clearly we have pa =t= 0, for the six functions excluding 

X\ have distinct orders at Q. On writing 

X = Xl5 Y = 2p5X2+p7X1+p3, 

we obtain Y2 = aXs + bX2 + cX + d, 

where a, b, c, d are polynomials inp1( ...,p1 with integer coefficients. 

The cubic on the right has distinct zeros, for if the equation reduced to 

{7/(Z-a)}* = a(Z-/?), 

then Y/(X — a) could possess a pole only at Q; but, since Z1; X2 have 

orders -2,-3 respectively at Q and p5 4= 0, the function has in fact 

a pole of order 1 at Q, contrary to the Riemann-Roch theorem. 

We observe now that, since Zl5 X2 are rational functions of x, y with 

coefficients in a fixed field, the functions X, Y become algebraic 

numbers in a fixed field when x, y are rational integers. Moreover, there 

exists a non-zero rational integer q, independent of x and y, such that 

qX and qY are algebraic integers; for the function X = X1 has a pole 

only at the infinite valuation Q and thus the equation satisfied by X 

over D.(x) has the form 

Xm+P1{x)Xm-1 + ...+Pm{x) = 0, 

where m is the degree of/in y and P1,...,Pm are polynomials in x with 

algebraic coefficients and degree at most 2. We conclude from Theorem 

4.2 that X, Y can take only finitely many values when x, y are rational 

integers. On noting again that X has a pole at Q, it follows at once that 

there are only finitely many x, and, in view of the initial equation 

f(x, y) = 0, so also finitely many y. Further, it is readily confirmed 

that all the arguments employed above are, in principle, effective, 

and this proves Theorem 4.3. 

The method of proof can easily be extended to treat curves of genus 

0 when there exist at least three infinite valuations, and this together 

with the above result enables one to resolve effectively the general 

cubic equation f{x,y) = 0; the latter can, however, be reduced more 

directly to the form considered in Theorem 4.2. 

5. Quantitative bounds 

As remarked earlier, the arguments employed here enable one to 

furnish explicit upper bounds for the size of all the solutions of the 

above equations. To calculate these hounds one needs first a quantita- 
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tive version of Theorem 3.1, and, in this connexion, the most useful 

result1 so far established reads: 

If ocv ...,txn are n > 2 non-zero algebraic numbers with degrees and 

heights at most d (> 4) and A (> 4) respectively, and if rational integers 

b1,...,bn exist with absolute values at most B such that 

0 < |b1 loga1 + ...+bnlogan\ < e~SB, 

where 0 < 8 < 1, and the logarithms have their principal values, then 

B < (4»*a“ii*»iog 4)<*»+«\ 

By applying this together with certain estimates for units in algebraic 

number fields, it has been shown that all solutions X, Y of the Thue • 

equation referred to in Theorem 4.1 satisfy 

max (||X||, || F||) < exp{(<ZZ7)(1M)I>}, 

where H denotes the maximum of the heights of a1(..., an, p and some 

algebraic integer generating K.t This leads to the bound 

exp exp exp (d10d‘ Hd‘) 

for the sizes of all solutions X, Y of the hyperelliptic equation 

discussed in Theorem 4.2. Further, employing the latter estimate and 

an effective construction for rational functions,8 it has been proved 

that all integer points x, y on the curve f{x,y) = 0 of Theorem 4.3 

satisfy max(|a;|, \y\) < exp exp exp {(2#)10"10}, 

where H denotes the maximum of the absolute values of the coefficients 

of/and n denotes its degree." 

In special cases one has stronger bounds. For instance, for the 

elliptic equation mentioned after the enunciation of Theorem 4.2, the 

estimate max (|a;|, |y|) < exp{(10®If)109} 

has been established, where a, b, c, d are assumed to have absolute 

values at most H; and for the Mordell equation y% = x3 + k, it has been 

shown, by way of an expression for C in terms of D. similar to that 

recorded after Theorem 3.1, that the bound exp(c|£|1+e) is valid for 

any e > 0, where c depends only on eA Furthermore, techniques have 

been devised which, for a wide range of numerical examples, render the 

problem of determining the complete list of solutions in question 

accessible to machine computation; thus, for example, it has been 

proved that the only integer solutions of the pair of equations 

t Mathemalika, 15 (1968), 204—16. 
} Phil. Trans. Roy. Soc. London, A 263 (1968), 173-91; P.C.P.S. 65 (1969), 439-44. 
§ P.C.P.S. 68 (1970), 105-23 (J. Coates). || P.C.P.S. 67 (1970), 595-602. 
If Acta Arith, 24 (1973), 251 9 (H. Stark). 
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3a;2 — 2 = y2 and 8a;2 — 7 = z2 are given by x = 1 and x = 11, and that 

the equation y2 = a;3 — 28 has only the solutions given by x — 4, 8, 37 

(the corresponding values of y being + 6, + 22, + 225 respectively).* 

Much interest attaches to the size of the solutions of the original 

Thue equation F(x,y) = m (see §1) relative to m. As a consequence of 

the third inequality for | A| recorded after the enunciation of Theorem 

3.1, the arguments leading to Theorem 4.1 show that, if m > 2, then 

|a;| and \y\ cannot exceed mc for some computable C depending only 

on F.* This yields at once an improvement on Liouville’s theorem; 

indeed, with the notation of Theorem 1.1, we have 

\ct-p/q\ > cjqK 

for all rationalsp/g' (q > 0), where c, k are positive numbers, effectively 

computable in terms of a, with k <n. The result, in slightly weaker 

form, was first established§ in 1967, particular cases, however, having 

been obtained a few years earlier by means of special properties of 

Gauss’ hypergeometric function." For instance it had been proved11 

that when a is the cube-root of 2 and 17 then the above inequality 

holds with c = 10~6, k = 2-955 and c = 10~9, k = 2-4 respectively, 

values in fact that are almost certainly sharper than those given by 

the more general techniques. But, leaving aside the effective nature 

of c, much more about rational approximations to algebraic numbers 

is known from the field of research begun by Thue, and this will be the 

theme of Chapter 7. 

Various other equations can be treated by the methods described 

here. They can be used, for instance, to give bounds for all solutions 

in integers x, y of the equation ym —f(x), where m > 2 and/denotes 

any polynomial with integer coefficients possessing at least two distinct 

zeros; in particular, they enable one to solve effectively the Catalan 

equation xm — yn — 1 for any given m, w.** Moreover, they can be 

generalized by means of analysis in the p-adic domain to furnish all 

rational solutions of the equations F(x,y) = m and y2 = xs + k whose 

denominators are comprised solely of powers of fixed sets of primes; 

thus, more especially, they yield an effective determination of all 

elliptic curves with a given conductor. 

f Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-37; J. Number Th. 4 (1972), 107-17. 
} I.A.N. 35 (1971), 973-90. 
§ Phil. Trans. Ray. Soc. London, A 263 (1968), 173-91. 
|| Proc. London Math. Soc. 4 (1964), 385-98. 
If Quart. J. Math. Oxford Ser. (2) 15 (1964), 376-83. 
ft P.C.P.S. 65 (1969), 439-44. In fact R. Tijdeman has reoently shown that they enable 

one to give an effective bound for all solutions x, y, m, n of the Catalan equation, 
ft Acta Arith. 15 (1969), 279-305; 16 (1970), 399-412, 426-35 (J. Coates). 



5 

CLASS NUMBERS OF IMAGINARY 
QUADRATIC FIELDS 

1. Introduction 

The foundations of the theory of binary quadratic forms, the fore¬ 

runner of our modern theory of quadratic fields, were laid by Gauss in 

his famous Disquisitiones Arithmeticae. Gauss showed, amongst other 

things, how one could divide the set of all binary quadratic forms into 

classes such that two forms belong to the same class if and only if there 

exists an integral unimodular substitution relating them, and he 

showed also how one could combine the classes into genera so that two 

forms are in the same genus if and only if they are rationally equivalent. 

He also raised a number of notorious problems; in particular, in Article 

303, he conjectured that there are only finitely many negative discrimi¬ 

nants associated with any given class number, and moreover that the 

tables of discriminants which he had drawn up in the cases of relatively 

small class numbers were in fact complete. The first part of the con¬ 

jecture was proved, after earlier work of Hecke, Mordell and Deuring, 

by Heilbronnt in 1934, and the techniques were later much developed 

by Siegel and Brauer to give a general asymptotic class number 

formula; but the arguments are non-effective and cannot lead to a 

verification of the class number tables as sought by Gauss. In 1966, 

two distinct algorithms were discovered for determining all the 

imaginary quadratic fields with class number 1, which amounts to a 

confirmation of the simplest case of the second part of the conjecture. 

Theorem 5.1. The only imaginary quadratic fields Q(\f( — d}) with 

class number 1, where d is a square-free positive integer, are given by 

d = 1,2,3,7,11,19,43,67,163. 

One of the original methods of proof, and that which we shall adopt 

here, is based on the work of Chapters 2 and 3 together with an idea 

of Gelfond and Linnik;* the other is due to Stark8 and is motivated by 

an earlier paper of Heegner11 which related the problem to the study of 

t Quart. J. Math. Oxford Ser. 5 (1934), 150-60. 
} D.A.N. 61 (1948), 773-6. 
§ Michigan Math. J. 14 (1967), 1-27. 

t 47 ] 

|| M.Z. 56 (1952), 227-53. 
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elliptic modular functions and the solution of certain Diophantine 

equations. The former method has recently been extended to resolve 

the analogous problem for class number 2, and we shall describe the 

solution in § 5. Neither method, however, would seem to generalize 

readily to higher class numbers. 

Nevertheless, transcendental number theory has led to new results 

in several associated subjects. For instance, it has been used by 

Anferteva and Chudakov1' to make effective certain theorems of 

Linnik on the average of the minimum of the norm function over 

ideals in a given class, and it has been employed by Schinzel and the 

author in studies relating to the ‘numeri idonei’ of Euler.* Further¬ 

more, it has been applied to resolve in the negative a well-known 

problem of Chowla as to whether there exists a rational-valued 

function f(n), periodic with prime period p, such that T,f(n)/n = OJ 

In fact it has provided a description of all such functions/that take 

algebraic values and are periodic with any modulus q; thus, in parti¬ 

cular, it has revealed that the numbers L(l,y) taken over all non¬ 

principal characters y (mod q) are linearly independent over the 

rationals, provided only that (q, <j>{q)) = 1, and this plainly generalizes 

Dirichlet’s famous result on the non-vanishing of L( 1, y). It would be 

of interest to know whether the theorem remains valid when 

(2,0(2)) > !• 
Some further results will be mentioned in § 5. 

2. L-functions 

We record here some preliminary observations on products of 

Dirichlet’s Z-functions. 

Let — d < 0 and k > 0 denote the discriminants of the quadratic 

fields Q{*J( — d)) and Q{*Jk) respectively, and suppose that (k,d) = 1. 

be the usual Kronecker symbols. Then, for any s > 1, we have 

^j)%n') = iSSx(/)/-s. (i) 
/ X,v 

where x, y ran through all integers, not both 0, and 

/=/(*. y) = a*2+bxv+cv2 
t Mat. Sb. 82 (1970), 66-66; = 11 (1970), 47-58. 
} Acta Arith. 18 (1971), 137-44. § J. Number Th. 5 (1973), 224-36. 
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runs through a complete set of inequivalent quadratic forms with 

discriminant — d. To verify this assertion, we observe that the left- 

hand side of (1) is given by 

oo oo 

S S (mn)~s = 
00 
S 

?=i 

and the last sum is one half the number of representations of l by the 

forms /,t 

Now the right-hand side of (1) can be written 

CO 00 00 

S Z *(«**) (««V+Z Z Z x(f)f~s- 
f x—1 f y= 1 x= — cc 

The first term here is 

«2«)n(l-!>-*•) Z^(o)o-, 
p\k f 

and the second term can be expanded as a Fourier series 

z z Ar(s) enirbma), 
f r= —CO 

where ^4r(s) = £_1 f Z Z X(f) 9~s e~27rirv'ik dv, 
J 0 2/ = 1 x= — oo 

9 = 9{v) = a(x + vy)2 + (d/4a) y2, and 

so that / = g(bj2a). On substituting u for v by the equation 

x + vy = uy(^dj2a). 

writing x = m + kyn, where 0 < m < ky, and interchanging the order 

of integration and summation, as one may by dominated convergence, 

one obtains 

where 

^4r(s) = k~xa 
00 

(Vd/2a)i-^ir(5) z <r(y)y-2s, 
y = l 

g—7riurVdl(ka) 

{u2 + l)s 
du 

and <r(y) = 
ky-1 

z x(f(m>y))e2nirml{kv)’’ 
m=0 

the integral in fact arises from summation over n of the partial 

integrals from cn to cn4l, where 

c„ = 2 a{m + kyn)/{y^/d). 

f Soo Landau’* Vorlesungcn iibrr Zahlenlhcarie (Leipzig, 1927), Satz 204. 
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On putting m = j + Id, where 1 ^ j ^ k, one sees that 

k 

°-{y) = y £ x(f(j>y))e2nimkv) 
}=i 

if y divides r, and a(y) = 0 otherwise, and this completes the pre¬ 

liminary observations. 

3. Limit formula 

All solutions to date of the class number 1 problem depend on an 

analogue for products of A-functions of the classical Rronecker limit 

formula. On writing, with the notation of the previous section, 

A0 = limA0(s), Ar = Ar(l) (r #= 0), 
8 —► 1 

and taking limits as s -> 1, we obtain 

L(1,x)L(1,xx') = ? n (l-i) s ^ + S S Are”-ma), (2) 
b p\k \ P I f a f r=-oo 

Our purpose here is to prove that 

O 
|Ar| < -k |r| e~,,irlVdKka) 

yd 

— 27T 
for r + 0, and A0 = y(a) logp 

if A: is the power of a prime p, A0 = 0 otherwise. 

To begin with, we observe that, for r 4= 0, 

Ar = (lkjd)-'ir(i) s S y-'xifU,y)) 
V 1 = 1 

where y runs through all positive divisors of r. It is easily confirmed 

that /r(l) = ne-mriVdim, 

and clearly the sum over y in Ar has absolute value at most k\r\. The 

first assertion follows at once. To establish the second assertion, we 

note that 

A0(s) = k-ia°-i(yd)i-*°i0(s) s S x(f(j,y)), 
y~l 1=1 

W = >r(s-i)/r(s)- and 
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Further, by well-known estimates for the Gaussian sums, we obtain, 

for any positive integer y and any odd k, 

S X(fti>y)) = x(«) S x(f)e*”iivlk-, 
1=1 1=1 

we shall be concerned in the sequel only with odd values of k, but the 

equation in fact holds also for even k, as has been shown by Stark.* 

The sum over j on the right can be expressed alternatively as a sum 

of terms dy{kjd) over all common divisors d of k and y,x and hence we 

see that the sum over y in the above expression for A0(s) is given by 

X(a) £(2s - 1) k2~is n (1 -i?28”2). 
p\k 

The required result is now readily verified. 

4. Class number 1 

Suppose that Q{->J( — d)) has class number 1. Then, by the theory of 

genera, d is a prime congruent to 3 (mod 4), and there is just one form 

/ which can be taken as 

x2 + xy + ^(t + d)y2. 

We select k = 21 and we note that Q(*Jk) has class number 1 and 

fundamental unit e = |(5 + -\/21). Further we note that (k,d) = 1 for 

d > k, and that A0 = 0. Hence the double sum on the right of (2) has 

absolute value at most m 

{^IS) 2 nf, 
*•=1 

where rj = e~7,Vdlk. The sum over r is precisely rjj{ 1 —r/)2, and rj < £ if 

> k; thus the above expression is at most 16ny/^d. 

Now classical results of Dirichlet give 

L(1,X) = 2 log e/V&, L{\,xx') = 

where h denotes the class number of Q(*J( — kd)), and, on substituting 

into (2), we readily derive the inequality 

\hloge — ^n,Jd\ < e~7,Vdl100, 

assuming that d > 1020, say. But n = — 2i log i and so we have on 

the left a linear form A in two logarithms of the kind considered 

t Acta Arith. 14 (1968), 35-60. 
t See Hardy and Wright’*, An introduction to the theory of numbers (Oxford, 1960), 

Theorem 271. 
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in Theorem 3.1; since clearly h < 4<Jd and log e, log i are linearly 

independent, we conclude that the inequality is untenable if d is larger 

than some effectively computable number. To calculate the latter, it 

is convenient to take a second inequality arising from (2) with k = 33, 

nameiy |A»loge'_ so^ < e-^d/iooj 

where h', e' are defined like h, e above with the new value of k. By 

subtraction we obtain 

16 log e + &'loge'| < e~sv, 

where 8-1 = 14 x 103, B = 140 *Jd, b = 3 5h, b' = —22 h', 

and clearly b, b' have absolute values at most B. Since, furthermore, 

e, e' are multiplicatively independent, one can apply the result quoted 

in § 5 of Chapter 4, with n = 2, d = 4, A = 46, to obtain B < 10250. This 

gives d < 10500, and a determination of the solutions of the above 

inequality below this figure is quite feasible. But the computation is in 

fact not needed here, for it was proved by Heilbronn and Linfoott in 

1934 that, apart from the nine discriminants listed in Theorem 5.1, 

there could be at most one more, and calculations* had shown that 

the tenth d, if it existed, would exceed exp (107). 

The above argument is similar to that described by Gelfond and 

Linnik in 1949, but they had access to the formulae of §3 only for 

prime values of k, and in this case A0 is not 0; thus they were led to an 

inequality involving three logarithms of algebraic numbers which 

could not be dealt with effectively at that time. It is a remarkable 

coincidence that both the formulae for composite k and the desired 

effective inequality involving three logarithms became available 

simultaneously in 1966. 

5. Class number 2 

We now indicate briefly how the above arguments can be extended to 

treat the analogous problem for class number 2.8 

If Q(<J{ — d)) has class number 2 and d > 15 then d is congruent to 

3 or 4 (mod 8); for if d = 7 (mod 8) there are three inequivalent 

quadratic forms with discriminant —d, namely 

x2+xy+\(\ + d)y2, 2x2±xy+$(l + d)y2. 

t Quart. J. Math. Oxford Ser. 5 (1934), 293-301. 
J Trans. Amer. Math. Soc. 122 (1966), 112-19 (H. M. Stark). 
§ For the original solutions see Ann. Math. 94 (1971), 139-52 (A. Baker); 153-73 

(H. M. Stark). 



CLASS NUMBER 2 53 

When d = 4(mod8), two inequivalent quadratic forms with dis¬ 

criminant — d are given by x2 + ±dy2, and either 

2r2 + 2aj«/ + |(4 + d)2/2 or 2r2 + ^dy2, 

according as \d = 1 or 2 (mod 4), and the method of proof of Theorem 

5.1 is applicable with only simple modifications.* There remains the 

case d = 3 (mod 8). The theory of genera shows that then d = pq, where 

p, q are primes congruent to 1 and 3 (mod 4) respectively. On signi¬ 

fying by x'(n) one °f the generic characters associated with forms of 
discriminant — d and writing 

*»<»> = (£). *«<"> = (-?)• *(">-(;). 

where k = 1 (mod 4) and (k,pq) = 1, we deduce from classical results 

of Dirichlet and Kronecker that 

X) XXpq) XXp) XXg) 

= i S S (X(F) + XX'[F)) (F(x, y))-\ 
F x,y 

where F runs through a pair/,/' of inequivalent quadratic forms with 

discriminant — d and x, y take all integer values, not both 0. We can 

assume that/is the principal form, whence x'(f) = 1. x'(f') = — 1 for 
all x, y. On appealing to Dirichlet’s formulae we thus obtain 

(Zj/2tT)<](pq) £ xif)/f = Hk) H - kpq) log e + h(kp) h{ - kq) log y, 
x,y 

where h(l) denotes the class number of Q(^Jl) and e, y denote the funda¬ 

mental units in Q(Jk), Q(^(kp)) respectively. Finally taking k = 21 and 

employing arguments similar to those applied in the proof of Theorem 

5.1, we reach the inequality 

|A(-21d)loge + A(21p)A(-21g')log9/ — < e(-1,loH/<z. 

This has the form 

|/?loga + /?Toga'+/?"loga"| < e~SB, 

where the ft’s denote algebraic numbers with degrees at most 2, and 

a = y, tx' = e, a" = — 1, B = Jd, $ = Clearly the heights of the ft’s 

are bounded above by an absolute power of B and the height A of a is 

bounded above by pF^v for some absolute constant c. If q ^ di then 

we can take /' as 
qx2 + qxy + \(p + q) y\ 

t Soo Bull. Lontl Math. Sac. 1 (1000), 08-102. 
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and again the method of proof of Theorem 5.1 is applicable. Thus we 

can assume that q > di whence p < di. We now appeal to the first 

inequality for |A| recorded after the enunciation of Theorem 3.1 and, 

on noting that the maximum A' of the heights of a', a" is absolutely 

bounded, we conclude that B < C(logA)1+£ for any £ > 0, where 

C = (7(£) is effectively computable. Hence we have 

*Jd < C(cJp\ogp)1+Z 

and, recalling that p < di, this plainly gives an effective upper estimate 

for d when £ < |. In practice* the bound for d turns out to be a little 

over lO1000, and computational work on the zeros of the £-function has 

yielded all d in question below this figure; thus it has been checked 

that the largest d for which Q(*J( - d)) has class number 2 is 427. 

Progress in this and other fields of application of the theory of linear 

forms in the logarithms of algebraic numbers is continuing, and, before 

leaving the topic, we record five further results that have been obtained 

with its aid. First it has been utilized by E. E. Whitacker* to determine 

certain imaginary quadratic fields with the Klein four-group as class 

group. Secondly it has been employed by K. Ramachandra and 

T. N. Shorey8 in researches on a problem of Erdos in prime-number 

theory; in particular, they have shown that if A: is a natural number and 

if nv n2,... is the sequence, in ascending order, of all natural numbers 

which have at least one prime factor exceeding k, then the maximum 

f(k) of ni+1 — ni(i = 1,2,...) satisfies/(&) log k/k -> 0 as k -> oo. Thirdly, 

in a similar context, R. Tijdeman” has used an inequality for | A | of the 

kind appearing after Theorem 3.1 to resolve in the affirmative a 

question of Wintner as to whether there exists a sequence of primes 

such that the sequence nx, n2,... of all natural numbers formed from 

their power products satisfies ni+1 -ni->co as i -> oo. Fourthly, 

A. SchinzeH has applied the second inequality for |A| recorded after 

Theorem 3.1 to settle an old problem concerning primitive prime 

factors of an—ftn. And, finally, we mention that in 1967, A. Brumer** 

obtained a natural p-adic analogue of an early version of Theorem 3.1 

which, in combination with work of Ax,** resolved a well-known 

problem of Leopoldt on the non-vanishing of the p-adic regulator of an 

Abelian number field. 

t Ann. Math. 96 (1972), 174-209 (H. M. Stark), 
j Ph.D. Thesis, University of Maryland, 1972. 
§ Acta Arith. 24 (1973), 99-111; 25 (1974), 365-73. 
|| Composilio Math. 26 (1973), 319-30. If J.M. 269 (1974), 27-33. 
tf Malhematika, 14 (1967), 121-4. ft Illinois J. Math. 9 (11)65), 584 9. 
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ELLIPTIC FUNCTIONS 

1. Introduction 

Siegel* proved in 1932 that if p(z) is a Weierstrass ^-function such 

that the invariants g3, g3 in the equation 

(p'(z)f = Hp(z))3-gzp(z)-g3 

are algebraic numbers, then one at least of any fundamental pair 

o), (o’ of periods of p(z) is transcendental; thus both oj and o)' are 

transcendental if p(z) admits complex multiplication. Siegel’s work 

was much improved by Schneider* in 1937; Schneider showed that if 

g3, g3 are algebraic then any period of p(z) is transcendental, and 

moreover the quotient w/w' is transcendental except in the case of 

complex multiplication. Prom the latter result it follows at once that 

the elliptic modular function j(z) is transcendental for any algebraic z 

other than an imaginary quadratic irrational. Schneider’s work led, in 

fact, to a wide variety of theorems on the transcendence of values of 

the Weierstrass functions, and, in 1941, he further obtained far- 

reaching generalizations concerning Abelian functions and integrals.5 

Most of Schneider’s results in this context can be derived as parti¬ 

cular cases of a general theorem on meromorphic functions which ho 

proved in 1949.11 The theorem has recently been re-formulated by 

Lang.11 

Theorem 6.1 .Let K be an algebraic number field and letffiz).fn(z) 

be meromorphic functions of finite order. Suppose that the ring K[fx./„] 

is mapped into itself by differentiation and has transcendence degree at 

least 2 over K. Then there are only finitely many numbers z at which 

fx, ...,/„ simultaneously assume values in K. 

A meromorphic function f(z) is said to have finite order if there 

exists p > 0 and a representation of / as a quotient gjh of entire func¬ 

tions such that, for any R > 2, and for all z with \z\ ^ R, one has 

max (|gr(z)|, |A(z)|) < exp {Re). (1) 

t J.M. 167 (1932), 62-9. t M.A. 113 (1937), 1-13. 
§ J.M. 183 (1941), 110-28. || M.A. 121 (1949), 131-40. 

See Bibliography (flret work). 

3 [66] BTN 
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The ring K[flt consists of all polynomials in fv with 

coefficients in K, and the transcendence degree is the maximum 

number of elements in an algebraically independent subset. Theorem 

6.1 has been generalized to relate to meromorphic functions of several 

variables but the assertion has been obtained only for point sets which 

can be represented essentially as a cartesian product and this limits 

considerably the range of application.t Functions of several variables 

have been utilized, however, as in Chapters 2 and 3, in other work on 

elliptic functions, and this will be the theme of § 5. 

2. Corollaries 

We now record some corollaries to Theorem 6.1; others can be found 

in the works cited in the Bibliography. 

Theorem 6.2. If g2, g3 are algebraic, then far any algebraic a 4= 0, 
p(a) is transcendental. 

For the proof one has merely to observe that if p(a) were algebraic 

then, for infinitely many integral values of z, the functions 

A(z) = PM, /a(z) = P'(az). /s(z) = z 

would simultaneously assume values in the algebraic number field 

generated by g2, g3, a, p{a) and p'(a) over the rationals, contrary to 

Theorem 6.1. 

Theorem 6.3. For any algebraic a with positive imaginary part, 

other than a quadratic irrational, j(a) is transcendental. 

For suppose that j{ct) is algebraic. Then there is a ^-function with 

algebraic invariants g2, g3 and fundamental periods (olt <o2 such that 

a = w2/wxi indeed if p(z) is the ^-function with periods 1, a and if 

g2, g3 are the invariants of p then the required ^-function has periods 

g\, ag\ if g3 =)= 0 and g\, ctg\ if g2 #= 0. Now the functions f± = fp(z), 

f2 = p(az),f3 = p'{z),fi = p'(az) simultaneously assume values in an 

algebraic number field, say K, when z = (r + J) (ot (r = 1,2,...) and so, 

by Theorem 6.1, iiI/1,/2,/3,/4] has transcendence degree at most 1. This 
implies that fltf2 are algebraically dependent, whence lo>2 is a period 

of p{az) for some positive integer l. Thus la<o2 — mo>1+na>2 for some 

integers m, n and so a is a quadratic irrational. It will be recalled that 

f For some work aimed towards overcoming this difficulty see papers by Bombieri 
[Invent. Math. 10 (1970), 267-87) and Bombieri and Lang [ibid. 11 (1970), 1-14). 
It is shown that it suffiooH if the points in question do not lie on an algebraic 
hypersurfaoo. 
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if 1, a is a basis for an imaginary quadratic field K, then J(a) is in fact 

a real algebraic integer with degree given by the class number of 

K, and hence the hypothesis of Theorem 6.3 is certainly necessary. 

Theorem 6.4. Any vector period of an Abelian function arising from 

an algebraic curved by the inversion of Abelian integrals is transcendental. 

The result follows from Theorem 6.1 with/1(z), ...,/„_i(z) given by 

the Abelian function, say A(z1, ...,zp), and its p partial derivatives 

with respect to zv...,zp, evaluated at zx = oqz,...,zp = wpz, where 

(mx, ...,(op) denotes the given period, together with/m(z) = z. It should 

perhaps be emphasized that the theorem establishes only the tran¬ 

scendence of one at least of the elements of the period vector, and it 

remains an open problem to prove the transcendence of each such 

element. As a particular application of Theorem 6.4 one sees that the 

^-function _ f1 . ... .... T (a)T(b) 
ft {a, b) = J* x?~1( 1 — a;)6-1 dx = 

r(a + b) 

is transcendental for all rational, non-integral a, b. For if a + b is not an 

integer then the elements of any vector period of the Abelian function 

arising from the integration of ra_1(l — r)6_1 are given by products of 

fl{a,b) with numbers in the field generated by elnia and e2nib over the 

rationals; and the case when a+ 6 is an integer reduces to the tran¬ 

scendence of it. This result on ft(a, b) represents all that is known 

concerning the transcendence of the values of the T-function. 

Finally, let w be a primitive period of a ^-function with algebraic 

invariants gz, g3 and let y = 2£(Jw) be the associated quasi-period of the 

Weierstrass ^-function satisfying £'(z) = — p(z). We have 

Theorem 6.5. Any linear combination of a), y with algebraic 

coefficients, not both 0, is transcendental. 

For the proof we observe simply that if aw + fiy were algebraic, 

where a, ft are algebraic numbers, not both 0, then the functions 

A = MZ)> /2 = P'(z), /3 = az+/?£(z) 

would simultaneously assume values in an algebraic number field when 

z = (r + £) (o (r = 1,2,...), contrary to Theorem 6.1. On recalling that 

(o and y can be represented as elliptic integrals of the first and second 

kinds respectively, one deduces easily from Theorem 6.5 that the 

circumference of any ellipse with algebraic axes-lengths is transcen¬ 

dental. Further work in this context will be discussed in § 5. 

f The ourvo in defined over the ulgebruio numbers. 

5-2 
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3. Linear equations 

We establish here a result on linear equations with algebraic coefficients 

which generalizes Lemma 1 of Chapter 2. K will signify an algebraic 

number field and ev c2, c3 will denote positive numbers that depend on 

K only. Further, as in Chapter 4, ||0|| will signify the size of 0, that is, 

the maximum of the absolute values of the conjugates of 6. 

Lemma 1. Let M, N be integers with N > M > 0 and let 

(1 < * < M, l^j^N) 

be algebraic integers in K with sizes at most U (> 1). Then there exist 

algebraic integers xv...,xN in K, not all 0, satisfying 

N 

£ UyXj = 0 (1 ^ i =$ M) 
j=i 

and ||zj ^ (1 ^ j ^ N). 

For the proof we denote by oq.con an integral basis for K and we 

observe that n 

j^k S 
h=1 

for some rational integers uhtjk. The equations serve to express the 

latter as linear combinations of the utj and their conjugates, with 

coefficients that depend only on K, and hence we have \uhijk\ < c2 U. 

It follows from Lemma 1 of Chapter 2 that there exist rational 

integers x}k, not all 0, with absolute values at most (c3NU)M!(N~M\ 

satisfying 

S S Uhwxjk = 0 (1 ^ h < n, 1 < i ^ M), 
3=1fc=x 

and it is now clear that the numbers 

n 

xj ~ S xjkMk (1 
k=1 

have the required properties. 

4. The auxiliary function 

We assume now that the hypotheses of Theorem 6.1 are satisfied and 

we write/4 = gjht, where gt, ht are entire functions for which (1) holds. 

We suppose further that there exists a sequence of distinct complex 
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numbers yv y%, ■■■ such that ft{y}) is an element of K for all i, j. By 

c4, c6,... we shall denote positive numbers which depend only on the 

quantities so far defined. We signify by m an integer that exceeds a 

sufficiently large c4, and by k an integer that is sufficiently large com¬ 

pared with m. We write, for brevity, L = [&£], and we use/W) to denote 

the /th derivative of/. 

Lemma 2. There are algebraic integers p{A1; A2) in K, not all 0, with 

sizes at most kc^k, such that the function 

1>(Z) = 22 p(Alf A2) (A(z))ai (/2(z))a* 
A, = 0 A,=0 

satisfies ®U){yi) = 0 (0 </ < Tc, 1 < l =$ m). 

Proof. The number is plainly expressible as a linear form in 

thep(A1(A2) with coefficients given by polynomials in A(«/*), - ..,/*(«/?)• 

The polynomials arise from the derivatives of A, ...,/„ which, by 

hypothesis, are elements of K[flt thus the coefficients of 

p(Als A2) belong to K. The latter become algebraic integers when 

multiplied by some positive integer, and we shall suppose that the 

sizes of these algebraic integers are at most U. The number of equations 

to be satisfied is if = m(k + 1) and the number of unknowns p(A1(A2) is 

N = (L +1)2 > k$. But clearly N > 2M for k sufficiently large and so, 

by Lemma 1, the equations can be solved non-trivially, and indeed 

with the sizes of the pfA^ A2) at most c\NU. Hence it remains only to 

prove that one can take U ^k?*k. 

Now it is readily verified by induction on / that, for any polynomial 

d d 

Q(x= 2 ... 
h=0 ln=0 

with coefficients in K, the function R(z) = Q(fv ■■■,/„) satisfies 

m*) = s ... s r(h,...,in)f['...fn\ 
h—0 h=0 

where the r(lv ...,ln) are again elements of K and d! 4, d +jS, $ denoting 

the maximum of the degrees of the first derivatives of flt... ,/n, 

expressed as polynomials in the latter. Further, it is easily confirmed 

that if the q{llt..., ln) become algebraic integers with sizes at most s 

after multiplying Q by some positive integer, then Bf-fi can be multi¬ 

plied by a positive integer so that the r(llt ...,ln) become algebraic 

integers with sizes at most 8 = (c1d)1j\s. The lemma follows on 
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supplying this result with Q = a/1 x\2 smd j < k, whence s = \,d < L < k 

and S < kc^k, and noting that, if k is sufficiently large, then the 

estimate k?»k obtains for each power product // evaluated at 

z = yh where li < d’ < c10k and l < m. 

Lemma 3. Far any R ^ 2 and far all z with |z| < R, the function 

<f> = (h1...hn)L<b satisfies 

\<p(z)\ < expIc^fclog/j + LJ?'3)}. 

Further, for anyj, l wilhj ^ k,l < m such that <t>(i)(yz) = 0 for all i < j, 

the number ^(3)(yt) either vanishes or has absolute value at least 

Proof. The first part is an immediate deduction from (1) together 

with the estimates occurring in Lemma 2. The second part is obtained 

by an argument similar to that employed in the proof of Lemma 3 of 

Chapter 2; one observes that ^\yt) is an element of K and that, for 

j ^ k, it becomes an algebraic integer with size at most fn1 when 

multiplied by some positive integer likewise bounded. Further, by 

hypothesis, differs from only by a factor (h1... hn)L 

evaluated at z = y}, and the required result now follows from the fact 

that the norm of a non-zero algebraic integer is at least 1. 

5. Proof of main theorem 

It suffices to prove that <t> vanishes identically; for this implies that/! 

and /2 are algebraically dependent and so, since the suffixes can be 

chosen arbitrarily, K[fv ...,/„] has transcendence degree at most 1, 

contrary to hypothesis. The contradiction shows that m is bounded 

by some c4 as above, whence the sequence y1( y2,... must terminate. 

The proof will proceed by induction ony; we assume that 

$(%*) = 0 (0 < i < j, 1 < l < m), 

and we prove that the same then holds for i = j. In view of Lemma 2 

we can suppose that j > k. Let now C be the circle in the complex plane 

described in the positive sense with centre the origin and radius 
R = jWp). Further, let 

F(z) = (z-yj.-.iz-yj, 

and let l be any integer with 1 < l < m. By Cauchy’s residue theorem 

f>U)(yi) = _j|_ f </>(*) dz 
(F'(y,))i 2ni]c(z-yt)(F(z))r 
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Clearly for z on C we have 

|F(z)| > {$R)m > jmK&p\ 

and also |z —1/,| > \R. Further, we have LR<J ^ k%ji < j and so, by 

Lemma 3, \<j>{z)\ ^ jc^K Furthermore, it is obvious that \F'(yt)\ < j 

for k sufficiently large. Hence we obtain 

But if m > 8p(c12 + c15) then, in view of Lemma 3, the latter estimate 

implies that ft^iyi) = 0. Assuming, as plainly one may, that hx... hn 

does not vanish at z = yp it follows that 0(^(?/;) = 0. Thus, by 

induction, we conclude that O and all its derivatives vanish at 

ylt whence O vanishes identically, as required. 

6. Periods and quasi-periods 

The work of Siegel, cited at the beginning, was based on the interpola¬ 

tion techniques discovered a few years previously by Gelfond,t and the 

work of Schneider arose out of further developments of these tech¬ 

niques leading, as mentioned in Chapter 2, to a solution of the seventh 

problem of Hilbert. The recent advances concerning linear forms in the 

logarithms of algebraic numbers discussed in earlier chapters have 

similarly given rise to new results on the transcendental theory of 

elliptic functions, as we shall now describe. 

First, generalizing Theorem 6.5, it has been shown that if &>lf w2 are 

primitive periods of some, possibly distinct p-functions both with 

algebraic invariants, and if are the associated quasi-periods of 

the ^-functions, we have* 

Theorem 6.6. Any non-vanishing linear combination of(o1, w2, yv y2 

with algebraic coefficients is transcendental. 

This establishes, in particular, the transcendence of the sum of the 

circumferences of two ellipses with algebraic axes-lengths. For the 

proof of Theorem 6.6 we signify by pv p2 the given p-functions, by 

£j, £2 the associated ^-functions and we assume, as we may without 

loss of generality, that the corresponding invariants Jgr2, \g3 are alge¬ 

braic integers. We assume also that there exists a linear relation 

a1w1 + a2w2 + /?15/1 + /?25/2 = a0, 

f Sty) <!.g. Tdhoku Math. 30 (1929), 280-5. 
{ QOttinyrn Narhrichtrn (1969), No. 16, 145-67. 



62 ELLIPTIC FUNCTIONS 

where a0 4= 0, av a2, ft2 are algebraic numbers, and we ultimately 

derive a contradiction. We signify by k an integer which exceeds a 

sufficiently large number c depending only on the a’s, /?’s and the 

invariants, periods and quasi-periods of the Weierstrass functions, 

and we write, for brevity, h = [fcnr], L = [&i], The argument then 

rests on the construction of an auxiliary function 

®(zi,z2) = £ £ £ ^(A0,A1,A2)(/(z1,z2))Ao(p1(Wlz1))Ai(p2(w2z2))\ 

where the p(A0, Ax, A2) are integers, not all 0, with absolute values at 

most k10k, and 

f(Zl’ Zi) — Ml&iZl + &2£t,2Z2“f Al£l((l>lZl) + P• 

The function is constructed to satisfy 

O mlt m [s + |,s + ^) — 0 

for all integers s with 1 ^ s ^ h and all non-negative integers mu m2 

with mx + m2 < k, where the suffixes denote partial derivatives as in 

Chapter 2. 

The essence of the proof is an extrapolation algorithm analogous to 

that described in connexion with linear forms in logarithms, but the 

order of here is greater than in the earlier work and, to compensate, 

rational extrapolation points with large denominators are utilized; 

an important role in the discussion is therefore played by the division 

value properties of the elliptic functions. The counterpart of Lemma 4 

of Chapter 2 asserts that, for any integer J between 0 and 50 inclusive, 

we have $„*,»,(*+ r/3,* + r/g) = 0 

for all integers q, r, s with q even, (r, q) = 1, 

1 =$ q =$ 2hiJ, 1 =$ s =$ 1 ^ r < q, 

and all non-negative integers mv m2 with m1 + m1 < kj2J. The demon¬ 

stration proceeds by induction and involves an application of the 

maximum-modulus principle as in the original lemma. It also utilizes 

the observation that, apart from a factor cof1 w™2, the number on the 

left of the required equation is algebraic with degree at most c'qi, where 

c' is defined like c above; and precise estimates for the number and its 

conjugates are furnished by division value theory. One concludes 

from the lemma that 

<1)»i1.m1(s + i>s + i) = ° 0 < « < L+ 1, 0 < mum2 < L), 
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which is clearly a system of (L +1)3 linear equations in the same 

number of variables p(A0, A1; A2); on noting that, for any regular 

function/, the determinant or order n with the ith derivative of (f(z))j 

in the ith row and/th column has value 

2l...n\(f’(z))i^n+1\ 

one easily verifies that the system of equations is untenable, and this 

proves Theorem 6.6. 

The special case of the theorem when plt p2 are the same ^-function, 

say p, is of particular interest. For then &q, w2 can be taken as a pair 

of fundamental periods of p and we have the Legendre relation 

= 2ni- 

In this case Coates1' and more recently Masser* have much extended 

the arguments and have proved: 

Theorem 6.7. The space spanned by 1, &q, w2, jq, ?/2 and 2ni over the 

algebraic numbers has dimension either 4 or 6 according as p does or does 

not admit complex multiplication. 

The theorem clearly exhibits a non-trivial example of five numbers 

that are algebraically dependent but linearly independent over the 

algebraic numbers. Moreover it implies that, when p admits complex 

multiplication, the numbers in question satisfy an algebraic linear 

relation other than that between the periods; this was discovered by 

Masser. It takes the form 

aVz ~ CTVi = 7W 2> 

where y is algebraic and a, c are the integers occurring in the equation 

a + br + cr2 = 0 

satisfied by r = oq/oq. A necessary and sufficient condition for y to be 

0 is that either gz or g3 be 0, and thus one deduces that jq/jq is tran¬ 

scendental if and only if neither invariant vanishes. The theorem also 

shows, for instance, that n + (o and n + y are transcendental for any 

period (o of p(z) and quasi-period y of £(z). The transcendence of njoj, 

incidentally, follows from Theorem 6.1 by way of the functions 

p(o)zjn) and e2iz. 

The demonstration of Theorem 6.6 extends easily to establish, under 

the conditions appertaining to Theorem 6.7, the transcendence of any 

t Amer. J. Math. 93 (1971), 386-97) Inventions Math. 11 (1970), 167-82. 
| Ph.D. Thoxiii, Cambridge*, 1974. 
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non-vanishing linear combination of Wj, w2, 7/1; t/2 and 2ni; the auxiliary- 

function now takes the form 

L L 

®(zi’z2>za) = 2 2 p(h0, ...,A3) 
A(=0 Aj=0 

X (f(z 1, z2, z3))A° (^i(wiZi))Ai 

where L = [fc&] and/(s1, z2, z3) is the sum of/(z1, z2), as defined above, 

and an algebraic multiple of 7rz3. Here, however, it is necessary to 

appeal to another remarkable property of the division values, namely 

that, for any positive integer n, the field obtained by adjoining 

Pfa-tln), p'((oJn) and p'{o)2jn) to K = Q(g2, gs, eiH'n) has 

degree at most 2n3 over K; this ensures that the estimate c'g4 referred 

to above remains unaltered in the present context. To complete the 

proof of Theorem 6.7 one has to establish the linear independence 

over the algebraic numbers of w1( t\x and 2ni in the case when p admits 

complex multiplication, and of these, together with w2, ?/2, in the case 

when p does not. The work runs on similar lines, using slightly modified 

auxiliary functions, but the determinant arguments at the end are no 

longer applicable; ad hoc techniques have been introduced to overcome 

this difficulty involving, in particular, new considerations on the 

density of zeros of meromorphic functions. The linear independence of 

cov w2 and 2ni was in fact proved first by Coates utilizing a deep result 

of Serre, but Masser later verified this more elementarily. 

In another direction, the work has been refined to yield estimates 

from below for linear forms in periods and quasi-periods. They show, 

for instance, that for any ^-function with algebraic invariants, for 

any e > 0, and for any positive integer n, 

\p(n)\ < Crfi°siog«),+£, 

where C depends only on g2, g3 and e.t In fact a similar result has been 

established for p(n + n) and for p(a), where a is any non-zero algebraic 

number. The estimate compares well with the lower bound | p(n) \ > Cn 

valid for some C > 0 and infinitely many n. 

Finally, as a further example of the type of theorem that has been 

obtained by the above methods, we mention a recent result of Masser* 

concerning algebraic points on elliptic curves; he has proved, namely, 

that if p(z) has algebraic invariants and admits complex multiplica¬ 

tion, then any numbers ux.un for which p(u{) is algebraic are 

f Amer. J. Math. 92 (1970), 619-22 (A. Baker); P.O.P.S. 73 (1973), 339-60 (D. W. 
Massor). | Th.D. ThoaiR, Cambridge, 1974. 
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either linearly dependent over Q(w1/wg) or linearly independent over 

the field of all algebraic numbers. It would be of much interest to 

establish a theorem of the latter kind more generally for all ^-functions 

with algebraic invariants, and it would likewise be of interest to 

extend Theorem 6.6 to apply to any number of p-functions; both 

problems, however, seem out of reach at present. 



7 

RATIONAL APPROXIMATIONS TO 
ALGEBRAIC NUMBERS 

1. Introduction 

In 1909, a remarkable improvement on Liouville’s theorem was 

obtained by the Norwegian mathematician Axel Thue.* He proved 

that for any algebraic number a with degree n > 1 and for any 

k > \n + 1 there exists c = c(oc, k) > 0 such that \a—p/q\ > cjqK for 

all rationals pjq (q > 0). His work rested on the construction of an 

auxiliary polynomial in two variables possessing zeros to a high order, 

and it can be regarded as the source of many of our modern transcen¬ 

dence techniques. The condition on k was relaxed by Siegel* in 1921 

to k > s + n/(s +1) for any positive integer s, thus, in particular, to 

k > 2yjn, and it was further relaxed by Dyson8 and Gelfond" inde¬ 

pendently in 1947 to k > *J(2n). The latter expositions continued to 

involve polynomials in two variables and further progress seemed to 

require some extension of the arguments relating to polynomials in 

many variables; in fact special results in this connexion had already 

been obtained by Schneider11 in 1936. A generalization of the desired 

kind was discovered by Roth** in 1955; he showed indeed that the 

above proposition holds for any k > 2, a condition which, in view of 

the introductory remarks of Chapter 1, is essentially best possible. 

Roth’s work, however, gave rise to a number of further problems. 

Siegel had initiated studies on the approximation of algebraic numbers 

by algebraic numbers in a fixed field, and also by algebraic numbers 

with bounded degree, and although Roth’s arguments could be readily 

generalized to furnish a best possible result in connexion with the first 

topic,** they did not seem to admit a similar extension in connexion 

with the second. Even less, therefore, did they appear capable of 

dealing with the wider question concerning the simultaneous approxi¬ 

mation of algebraic numbers by rationals. The whole subject was 

resolved by Schmidt88 in 1970; building upon Roth’s foundations but 

t J.M. 135 (1909), 284-305. 
§ Acta Math. 79 (1947), 225-40. 
«|[ J. M. 175 (1939), 182-92. 

tt See LeVeque (Bibliography). 

t M.Z. 10 (1921), 173-213. 
|| Bibliography. 

ft Mathematika, 2 (1955), 1-20. 
§§ Bibliography. 

f68] 



INTRODUCTION 67 

introducing several new ideas, in particular from the Geometry of 

Numbers, he proved: 

Theorem 7.1. For any algebraic numbers al9..., a„ with 1, atv ..., an 

linearly independent over the rationals, and for any e > 0, there are only 

finitely many positive integers q such that 

21+eM •••IM < i- 

Here ||a;|| denotes the distance of x from the nearest integer taken 

positively. The theorem implies, by a classical transference principle,1 

that there are only finitely many non-zero integers qlt ...,qn with 

l?i••• 2m|1+e||9liai + ••• +2«a«l| < I- 

Further, as immediate corollaries, we see that there are only finitely 

many integers plt..., pn, q (q > 0) satisfying 

\aj-Pjk\ < (1 < j < n), 

and also only finitely many integersp, qv ...,qn satisfying 

\q1cc1+...+qnan-p\ < q~n~ 

where q — max |^|. Furthermore we have: 

Theorem 7.2. For any algebraic number a with degree exceeding n 

and any e > 0, there are only finitely many algebraic numbers fi with 

degree at most n such that \a—fl\ < where B denotes the height 

°f P- 

The theorem follows from the inequality just above with a} = a3’, on 

noting that, if P(x) is the minimal polynomial for /?, then 

|P(a)| <BC\a-fi\ 

for some C depending only on a. The exponent of B is essentially best 

possible, as has been demonstrated by Wirsing.* In fact, Wirsing 

obtained Theorem 7.2 in 1965 before the work of Schmidt, but with 

the less precise exponent — 2n — e. # 

One of the main applications of the methods of this chapter has 

concerned Diophantine equations of norm form in several variables, 

which generalize the Thue equation discussed in Chapter 4; indeed the 

t See Camels’ Diophantine approximation (Bibliography), 
j J. M. 206 (1961), 67-77. 
| Proc. Sympoeia Pure Math. (Amrr. Math. Soc.), 20 (1971), 218-47. 



68 RATIONAL APPROXIMATIONS TO ALGEBRAIC NUMBERS 

work has led to a complete description of all such equations that 
possess only finitely many solutions, t 

Theorem 7.3. Let K be an algebraic number field and let M be a 
module in K. A necessary and sufficient condition for there to exist an 
integer m such that the equation N/i = m has infinitely many solutions y 
in M is that M be a full module in some subfield of K which is neither the 
rational nor an imaginary quadratic field. 

The necessity follows at once from the fact that the subfield, if it 
exists, contains at least one fundamental unit, and the sufficiency is a 
consequence of a generalized version of Theorem 7.1 relating to 
products of linear forms ;* it is in fact a direct corollary in the case 
when the dimension of M is small compared with the degree of K. As 
examples, one sees that the equation 

N{x1 + x2^j 2 + xs*j3) = 1 

has infinitely many solutions in integers xx, x2, xs given by 

+ = ±(1+V2)“> and by x1 + xs^3 = ± (2 + <j3)n, 

where n = 0,1,2,...; and the equation 

N (.Tj + qlipx2 + ... +q(p~2'>lpxp_l) = m, 

where p, q are primes and m is any integer, has only a finite number of 
solutions in integers xv ...,xp_i, for clearly the field generated by 
q'lp over the rationals has only trivial subfields. It should be noted, 
however, that, in contrast to the work of Chapter 4, the arguments 
here are not effective and cannot lead to a determination of the 
totality of solutions. In fact, apart from a few special results of 
Skolem,§ the only effective theorems established to date on equations 
of norm form in three or more variables derive from the work on the 
hypergeometric function referred to in § 5 of Chapter 4." 

A generalization of Roth’s theorem in the ^p-adic domain was 
obtained by Ridout11 in 1957; in particular he proved that for any 
algebraic number a and any e > 0, there exist only finitely many 
integers p, q, comprised solely of powers of fixed sets of primes, such 
that \a— p/q\ < q~e. In this case, however, Theorem 3.1 gives rather 
more; in fact, on taking al = a and the remaining a’s as the given 

t M.A. 191 (1971), 1-20. 
t For an account of this and associated topics one may refer to the excellent survey 

of Schmidt; Enaeignement Math. 17 (1971), 187-253. 
§ Bibliography. || P.C.P.S. 63 (1907), 093-702. 
f Malhematika, 4 (1957), 125 31; 5 (1958), 40-8; see also Mahler (Bibliography). 
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primes, one sees at once that q~e can be replaced by (log q)~° for some c 

depending only on a and the primes, a result moreover that is fully 

effective. Further theorems in the context of p-adic approximations 

follow from the other inequalities for | A| recorded in Chapter 3. 

2. Wronskians 

The Wronskian of polynomials <j>x{x),..., <j>k(x) of one variable is defined 

as the determinant of order k with <p(p{x) in the ith row and 

(j + l)th column, where 1 ^ i ^ k, 0 < j < k, and <p<j) denotes the jth 

derivative of <f>. Such Wronskians occurred in the original work of 

Thue, and they sufficed for the expositions of Siegel, Dyson and 

Gelfond; the arguments of Roth and Schmidt, however, involved the 

concept of a generalized Wronskian. Suppose that <fix,...,<fik are 

polynomials in n variables x1,...,xn and let A(?) denote a differential 

operator of the form 

(j1\...jjr1(8/8x1)h...(8/8xn)^ 

where jx + ... +jn =j. Then any determinant of order k with some 

in the ith row and (j + l)th column is called a generalized 

Wronskian of <j)x, ...,<pk. There are clearly only finitely many 

generalized Wronskians of <f>x.<pk, and when n = 1 the set reduces 

to the original Wronskian. We shall require later the result that if 

4>x,..., <pk are linearly independent over their field of coefficients then 

some generalized Wronskian does not vanish identically; proofs are 

given, for instance, in the tracts of Cassels and Mahler. 

3. The index 

The proof of Theorem 7.1 involves polynomials P in kn variables 

xlm (1 < Z ^ homogeneous in x^, ...,xkm for each m. 

Suppose that P has real coefficients and let Lm (1 < m ^ n) be real 

linear forms in xXm, ...,a;to„. Then the index of P with respect to 

Lx Ln and positive integers rx rn is defined as the largest value of 

(jlN + -..+(jnlrn) 

taken over all sets jx, ...,jn such that the rational function 

PI(L{'...L1nn) 

is in fact a polynomial. It is easily verified that, for any polynomials 



70 RATIONAL APPROXIMATIONS TO ALGEBRAIC NUMBERS 

P, Q as above, the index, for brevity, ind, with respect to the Lm and 

fm satisfies ind (P + Q) > min (indP, ind Q), 

indPQ = indP + indQ. 

We shall require also the related concept of the index of a real 

polynomial P(xx, ...,xn) with respect to rationals pmjqm (qm > 0) and 

integers rm>0(l^m^w); this is defined as the index of the 

polynomial ...a^»P(*u/*«i,-, *!»/*«») ' 

in the 2n variables xlm (l = 1,2) with respect to the linear forms 

■^m Qm^lm 

and the rm, where dm denotes the degree of P in xm. The index in the 

latter sense occurred first in the work of Roth, and the generalized 

concept was introduced by Schmidt. 

In analogy with the notation of earlier chapters, we define the 

height ||P|| of a polynomial P as the maximum of the absolute values 

of its coefficients; we shall speak of the height only for polynomials with 

rational integer coefficients, not identically 0. The same definition will 

of course apply in the special case of linear forms. 

Suppose now that P is a polynomial in hn variables as indicated at 

the beginning of the section. Let Lv ...,Ln be linear forms as there, 

with relatively prime integer coefficients, and let qm = \\Lm\\. Further 

let r1;...,rn be positive integers such that 8rm > rm+1 (1 ^ m < n), 

where 8 = (e/32)2” and 0 < e < 1. We have 

Lemma 1. Ifcf™ > qf1 n)andq(v > 8mfca, where 0 < q ^ 1c, 

and if also P has height at most qfiri!kl and degree at most rm in 

xlm,xkm, then the index of P with respect to the Lm andrmis at most e. 

This is an extension, due to Schmidt, of the most fundamental 

part of Roth’s work, sometimes called Roth’s lemma. The result 

follows easily in fact from the case considered by Roth, as we now 

show. 

We assume, as we may without loss of generality, that qm = |nlm|, 

where k 

Lm = S (1 < m < »)■ 
i=i 

We shall further assume that (alm, a^f is at most gr^_2,/(fc_1>; this 

also involves no loss of generality, since a prime p can divide at most 

f (a, 6) denotes the greatest common divisor of a, b. 
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k — 2 of the integers (alm, alm) with 1 < l ^ k, whence their product 

divides q%,~2. Let now P' be the polynomial obtained from P by 

successively removing, in some order, the highest power of 

(l^l^ k, 3 y m y w) 

that divides P and then setting the variable to 0; further let P" be the 

polynomial obtained by setting xl2 = 1 in P' for each l. Then clearly 

the index of P with respect to the Lm and rm is at most the index of P" 

with respect to — a%mlalm and rm. Also, by assumption, the denominator 

of aimjalm, when expressed in lowest terms, namely qm/(alm, a^n), is at 

least qfjf. Hence we see that it suffices to prove the following modified 

version of Lemma 1. 

For any integers rm (1 ^ m ^ n) as above and any rationals 

Vmkm km > 0) 

in their lowest terms such that ef™ > qYl and q'{v > 8n, where 0 < 7/ ^ 1, 

the index with respect to the pm/qm and rm of any polynomial P(x1,xn) 

with height at most qlvn and degree at most rm in xm is at most e. 

Proofs of this proposition, possibly in slightly adapted form, in 

particular with 77 = 1, are given in several of the texts cited in the 

Bibliography, and our exposition can therefore be relatively brief. The 

result plainly holds for n = 1, for ifjx is the exponent to which x1—p1jqi_ 

divides P(*x) then, by Gauss’ lemma, we have 

P(*i) = {<hXi-Pi)hQ{Xi), 

where Q is a polynomial with integer coefficients; thus the leading 

coefficient of P is at least q{1, whence ji/r1 < 87} < e, as required. We 

now assume the validity of the proposition with n replaced by n — 1 

and we proceed to establish the assertion for n (3* 2). 

We begin by writing P in the form 

0o^o+...+&_1^g_1, 

where the 0’s and ijr’s are polynomials in the variables x1;xn_1 and 

xn respectively with rational coefficients, and we choose one such 

representation for which s(^rn + l) is minimal. Then there exist 

Wronskians U', V' of the 0’s and 0’s respectively which do not vanish 

identically, and clearly W = U'V can be expressed as a determinant 

of order s with Au)(x!)-1 p  

in tho (i+ 1 )th row and (j+ 1 )th column, where the A(^are operators 

6 HI N 
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as in § 2 with jn = 0. Hence W is a polynomial with degree at most 

sTj in Xj and with 
\\W\\ < (8rn||P||)S < qlSvrs, 

where r = rt = maxrm; here we are using the hypothesis q^> > 8n and 

the observations that acting on any monomial in P introduces 

a factor not exceeding 2rn, that there are at most 2rn such monomials, 

and that the number of terms obtained on expanding the determinant, 

for W is s! ^ 2rs. Now, again by Gauss’ lemma, we have W = UV, 
where U, V are polynomials with integer coefficients in the variables 

x±.%n-\ and xn respectively, given by some rational multiples of 

U', V'; and clearly the bound for || TF|| obtains also for || U\\ and || F||. 

Thus, by our inductive hypothesis, it follows, on taking 28 in place of 8, 

that the index of U with respect to the pm/qm and rm is at most 
2-5+i/2»-ise2 Further, by the case n = 1 of the proposition together 

with the hypothesis^* ^ qYl, the same bound applies for the index of F. 

We conclude therefore that the index of W is at most ^se2. 

On the other hand, the index of the general element in the deter¬ 

minant for W is at least n_1 

4*1 2 jmfrrn’ 
m— 1 

where 0,£ = 6 — ijrn,d denotes the index of P, and 

+ = 3 < s-1 < rn> 

further, by hypothesis, we have 8rm > rm+l and so the above sum is at 

most 8. Hence the index of W is at least 

s-l 
2 max ((/)i — 8,0) 

i = 0 

s-l 

^ 2 max (0i> 0) — s8. 
1 = 0 

But if 6rn <s — l then the last sum is 

(lGrnl + l)(6-[6rn]l(2rn)) > ±6% 

and if 6rn ^ s — 1 then it is 

ds-\s{s-\)jrn 5; \6s. 

On comparing estimates, we obtain 

max(|0, \(P) < Jea+£ < \e2, 

whence 6 < e, as required. 
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4. A combinatorial lemma 

We prove now a lemma of a combinatorial nature relating to the 

law of large numbers.^ A result of this kind occurred first in the work of 

Schneider, and it was utilized later by Roth who gave a simplified 

proof due to Davenport. Another proof, attributed to Reuter, and 

furnishing a slightly stronger theorem, was given by Mahler in his 

tract, and Schmidt subsequently obtained the generalization we 

establish here. 

Lemma 2. Suppose that rlt...,rn and k are positive integers and 

that 0 < e < 1. Then the number of non-negative integers 

Jim (1 < Z <k, 1 < m n) 
satisfying 

k n 

2 jim = rrn (1 < rn < n), £ jimlrm < n/k - en, 
1=1 m=1 

is at most rvrn 
We commence the proof by observing that the required number N of 

integer.Misgiven by &,0u)... 

where the sum is over all non-negative integers jn, ...,jln satisfying 

the given inequality, and vm(j) denotes the number of solutions of the 

equation k 

S 3lm rrn 3 
1=2 

in non-negative integers^, that is 

’-‘H-i-i-*)- 

Hence we see that the multiple sum 

£ • • • 2 Vi(ji) • • • vjjm) exp Ue (n/k- 2 jjrm) j 
ii=0 jm — O l \ m=1 /) 

is at least N eie*n. Now the sum can be written alternatively in the form 

n I r„ ^ 

I! 2 vm{jm)exp(^epm)\, 
m-1 b.,-0 ) 

t Cf. the paporof WiraiiiH citi'tl earlier: Proc,Symposia Pure, Math. (Amer. Math. Soc.), 

30 (1971). 213 47. 

f>-2 
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where pm = 1 /k and clearly \pm\ < 1. But if |a:| < 1 then 

ex < 1 + x+x%, and so 

exP (iePm) < iepm + exp(iea). 

Further we have S Pm 0, 
i*1=0 

for pm can plainly be expressed as 

-!/&)> 

and it is easily verified by induction on r that 

^ (r-j + k-2\ _ /r + fc-l\ 

A l k-2 )-{ r )’ 

k — 2 ) r(1 *)( r )’ 

Thus, on appealing again to the first of the above binomial identities, 
we obtain „ .. , , 

II f(rm + ^_1)el£2] ^ Nei°in, 
nt=1 l \ rm 1 ) 

and this gives the asserted estimate. 

5. Grids 

Let T be a subspace of ^-dimensional Euclidean space spanned by 

linearly independent vectors ux,. By a grid of size s on T we 

shall mean the finite set of vectors of the form 

WiU1 + ...+Wfc_1UJb_1, 

where wk, run through all rational integers with 1 < < s. 

Now let Tm (1 < m < n) be any subspaces as above, and let Tm be 

a grid of size sm on Tm. Further let T, V signify the cartesian products 

Txx ... x Tn and I\ x ... x TM respectively. We shall denote by P 

a polynomial as indicated at the beginning of § 3 with degree rm in 

xlm,..., xkm, and we shall signify by A(^ a differential operator as in § 2, 

acting on xlm,..., xkm. The following simple lemma, due to Schmidt, is 

fundamental to the proof of Theorem 7.1. 

Lemma 3. If, for some integers tm (1 < m ^ n) with sm(tm + 1) > rm, 

all polynomials AJ^... A(fn) P withjm < tm vanish everywhere on T, then 

P vanishes identically on T. 
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It is clear that the lemma follows at once by induction from the case 

m = 1, and it will suffice therefore to prove the latter. Further, one can 

obviously assume, by applying a linear transformation, that Tm is the 

plane xkm = 0, with basis consisting of the first k — 1 rows of the unit 

matrix of order k. Thus, omitting the suffix to, we see that it is enough 

to prove: 

A polynomial P(xv xk_t) with degree r vanishes identically if all 

A!-VP with] < t vanish at all integer points (wv with 1 ^wl^s, 

where +1) > r. 

Here Af-ft denotes a differential operator on xlt..., xk_j, of order j. The 

assertion is clearly valid for k = 2, since a polynomial in one variable 

with degree r cannot have more than r zeros, and we shall assume the 

proposition when k is replaced by k — 1. If now P does not vanish 

identically then there is a largest integer q such that the rational 

function „ . .. „ . , „ „ 

is in fact a polynomial, and since, by hypothesis, s(i+1) > r, we have 

q ^ t. Further, by choice of q, one at least of the polynomials 

Q(w1,xi.xk_x) with 1 < wx < s does not vanish identically; let 

this be R. Then A^ftR vanishes at all integer points (w2,..., wk_^) with 

1 < wt < s, where is any differential operator on x2.a:fe_1 with 

order j < t — q. But R has degree at mostr — sq < (t — q+1) «, and this 

is plainly contrary to the inductive hypothesis. The contradiction 

establishes the assertion. 

6. The auxiliary polynomial 

For each m with 1 ^ to < n we shall denote by Llm (1 < ? < i) linear 

forms in xlm,xkm with real algebraic integer coefficients. Further 

we shall denote by d the degree of the field K generated by all the 

coefficients over the rationals, and we shall signify by cv c2,... numbers 

greater than 1 which depend on these coefficients only. 

Let now rlt...,rn be any positive integers, and let r = maxrm. 

Further suppose that 0 < e < 1 and that eb2” > 2kd. Adopting the 

notation of § 3, we have 

Lemma 4. There is a polynomial P with degree at most rm in 

xlm.x^ and with height at most c\ such that, for each l with 1 < f ^ 
the index of P with respect to the Llm and rm is at least nfk — en. 
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It can be assumed, without loss of generality, that, for all l, m, the 

coefficient of xlm in Llm, say alm, is not 0. Then P has to be determined 

such that, for all l and all non-negative integers j1; with 

the polynomials 

n 

2 im!rm < »/*“ 
m—1 

en, 

(ii! •••in!)-1 (dldxn)j 1 ••• (8l8xm)inP 

vanish identically when — Llm, with xlm equated to 0, is substituted for 

xlm, and the factor alm is included to multiply each of xZm, ...,xkm. 

Now these polynomials are homogeneous in x2m,xkm with degree 

rm —jm and hence, by Lemma 2, they have, in total, at most kNer ic2n 

coefficients, where N denotes the product of binomial factors occurring 

in the enunciation of the lemma. Each coefficient is a linear form in the 

coefficients of P, and there are precisely N of the latter. Furthermore, 

the coefficients in the linear forms are algebraic integers in K with 

sizes at most crz (cf. the estimates in §3). It follows, on utilizing an 

integral basis for K and recalling the hypothesis eh2™ > 2kd, that one 

has to satisfy at most \N linear equations with rational integer 

coefficients each having absolute value at most c£ (cf. § 3, Chapter 6). 

The required result is now obtained from Lemma 1 of Chapter 2. 

7. Successive minima 

We recall from the Geometry of Numbers that if R is any convex body 

in ^-dimensional Euclidean space, then the numbers A, (1 < l < k), 

given by the infimum of all A > 0 such that XR contains l linearly 

independent integer points, are termed the successive minima of R, 

and they have the property that X1...XkV, where V denotes the 

volume of R, is bounded above and below by positive numbers 

depending only on k. 

We now combine the preceding lemmas to obtain a proposition on 

the penultimate minimum of a certain parallelepiped, which will be the 

main instrument in the proof of Theorem 7.1. We shall denote by 

Mv Mk linear forms in xv ..., xk with real algebraic integer coeffi¬ 

cients constituting a non-singular matrix A, and we shall signify by 

M Mk the adjoint linear forms with coefficients given by the 

columns of A-1. Further we shall signify by S some non-empty set of 

suffixes i such that Jlf j does not represent zero for any integral values, 

not all 0, of the variables; the assumption that S exists involves, of 

course, some loss of generality. We prove: 
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Lemma 5. For any £ > 0 there exists c > 0 such that for all positive 

fa, ...,pk satisfying px... pk = 1 and fa > 1 /or i in 8, the penultimate 

minimum Xk_x of the parallelepiped \MX\ < fa (1 < l < Jc) exceeds fa~S, 

where p, denotes the maximum of fa, ...,fa and c. 

It will be seen that the lemma immediately implies Roth’s theorem, 

that is the case n = 1 of Theorem 7.1; this follows on taking 

= CCXXX X%, 312 — X% 

and’S to consist just of the suffix 2, as is possible since ax is irrational. 

We show first that it suffices to prove a modified version of Lemma 5. 

Suppose that Q ^ jik and let cjx,...,o)k be defined by fa = QaK Then 

since fa...pk = 1 we have a)x +... +a)k = 0 and clearly u> i>0 for i in S. 

Clearly also a)t ^ 1 for all l and, since again fa... fa = 1 we have 

fa ^ Q~S whence to, > — 1. Now for any positive integer N there are 
rationals w'x, ...,w'n with denominator N satisfying |a»,—w|| < 1 /N and 

\(o’i\ < 1 for all l, and also «j +... +a>k = 0; indeed one has merely to 

take N(u[ = [NwJ and, having defined o)'x,..., o)'x_x, to take Ncj'x as 

[IVwj] or — [ — Na)t] according as +... + <FX_X does or does not exceed 

&>! + ...+ cjx_x. Plainly the a)[.cj'k belong to a finite set of rationals 

independent of Q, and the minimum of the parallelepiped 

\MX\ ^ Q*'i (1 < l < Jc) exceeds Q~llN3k_x. Hence it is enough to prove: 

For any real wx, ...,wk with w1 +... + wk = 0, |w;| < 1(1 ^ l < Jc) 

and Wi > 0 for all i in S, and for any £ > 0, there exists C > 0 such that, 

for all Q > C, the minimum Xk_x of the parallelepiped 

\MX\ a Q“i (l^l^k) 
exceeds Q~£. 

We shall suppose that g < 1, as obviously we may, and we shall 

signify by d the degree of the field generated by the elements of A over 

the rationals. Let e be any positive number less than £/(8k)2, let n be 

any integer satisfying the condition preceding Lemma 4, and let 8 be 

defined as in Lemma 1. We shall assume that there is an unbounded set 

of values of Q such that Afe_j < Q~£, and we shall ultimately derive a 

contradiction. We select a sufficiently large Qx in this set, that is 

Qx > cx, where cv like c2, c3 below, depends only on A, k, n, d, e, 8, £ and 

the w’s. We then select further elements Q2,..., Qn in the set such that 

Ql* > Qm-l (1 < m 3? n), whence clearly Qx < ... < Qn. Finally we 
choose positive integers rlt ...,rn such that Q{rj > Qn and 

Q? < Qm < Qi(1+,)r* (1 ^ TO ^ n); 

then plainly the condition preceding Lemma 1 is satisfied. 
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We observe now that the hypotheses of Lemma 4 hold when 

Llm = Af,(xJ, where xm denotes the vector (xlm,xkm); let P be the 

polynomial constructed there. Further we note that, for any Q as 

above, there exist linearly independent integer points u1; ...,ufc with 

u, in X(R, where R denotes the given parallelepiped and Ax,...»Afe its 

successive minima. Moreover, there is a linear form L with relatively 

prime integer coefficients, unique except for a factor + 1, which 

vanishes at u1;..., ; we take ulm and Lm to be these and L 

respectively when Q = Qm. We shall verify later that, if Q is sufficiently 

large, then q = |L|| satisfies Q° < q < Qc', where c, c' are positive 

numbers depending only on £ and d. Assuming this for the present, it 

follows that all the hypotheses of Lemma 1 are satisfied with y = c/c', 

provided that cu and so also qx and Qu are large enough. Hence we 

conclude that the index of P with respect to the Lm and rm is at most e. 

We proceed to prove that, with the notation of § 5, all polynomials 

AP with n 

A = Af«... AJW, £ jjrm < 2en 
m-1 

vanish everywhere on T, where Tm is the grid of size [e-1] + 1 on the 

space Tm spanned by u,m (1 ^.l < 1c). This implies, by Lemma 3, on 

taking tm = [er,m], that all polynomials AP, with 'Ljmjrm < en, vanish 

identically on the n(1c — 1 )-dimensional space of solutions of 

Lx = ... = Ln = 0. 

But the latter contradicts the above conclusion concerning the index 

of P, and the contradiction establishes the lemma. To prove the pro¬ 

position, let AP be any of the polynomials in question and let P' be the 

polynomial in new variables ylm obtained from AP by the linear 

substitution ylm = Llm. Then it is readily verified that P' has height at 

most cr2, where r = max rm. Further, since, by assumption, A*.^ ^ 

we have for any xm on Tm 

\ylm\ < *(6^ + 1)QS-c < Q%~k- 

Thus, by Lemma 4, it follows that, for all points on T, we have 

|AP| < cjje®, where 
k n 

1=1 m=l 

and jlm are some non-negative integers with 

k n 

Site < rrn (1 < rn n), n/Jc- 2 Rmlrm < 3e» (1 *£ l < k). 
/“I m^\ 
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Denoting, for brevity, the left-hand side of the last inequality by hlt 

we see that, by the first inequality, hx +... +hk ^ 0, and so both 

inequalities together imply that |A;| < 3kne. Further, since |&>;| < 1, 

we obtain, in view of the initial choice of rx, ...,rn, 

« < »i log Qx S S {(wj - + 2e}. 
1=1 m=1 

But now, by virtue of our estimate for hi and the hypothesis 

+... + wk = 0, 

the double sum here differs from — \1jn, by at most 81c2ne. Since, by 

definition, e < £/(8k)2, it follows that |AP| < Qxi£nr < 1, provided Qx 

is sufficiently large. On the other hand, AP is a rational integer for all 

points on T, and hence AP = 0, as required. 

It remains only to prove the assertion concerning q = ||P||. Let U be 

the matrix with columns iq, ...,iq. and let vx,...,vk be the rows of 

U-1. Then clearly pvk is the coefficient vector of L for some rational p. 

Since L(uk) is an integer and vfcufc = 1, p is in fact an integer. Further p 

divides det U, for plainly U-1 = adj U/det U.f Furthermore we have 

det U 1, where the implied constant depends only on A,1 for 

certainly R has volume > 1 and hence, by the property of successive 

minima quoted at the beginning, det (AU) 1. It follows that each 

element of (det U) \k is a rational integer <| q. Hence the element in 

the &th row and ?th column of adj (AU), namely (det (AU)) M\{\k), is 

an algebraic integer with size <| q. But by hypothesis we have 

Afc_x < and w1 + ... +wk = 0, and thus the element is also 

Q-n-te-1)£. We conclude that, for l in S, the element is both 

> q~d and <| Q-(fe-1)e, and, since S is assumed non-empty, this gives 

the required lower bound for q. The upper bound follows from the 

identity U-1 = (AU)-1 A, on observing, as above, that the elements in 

the Mh row of (AU)-1 are <| Q. 

8. Comparison of minima 

We prove first a general lemma of Davenport, and we proceed then 

to show that, with some proviso, the minima and Afc of the 

parallelepiped of Lemma 5 differ only by a small factor. Constants 

implied by will depend only on k. 

t ‘det’ and ‘adj’ are abbreviations for determinant and adjoint respectively. 
X We are using Vinogradov’s notation; by a < 6 one means |a| < be for some oonstant 

c, and similarly for >. 
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Lemma 6. Let Lv..., Lk be real linear forms with determinant 1 and 

let Xv..., Xk be the successive minima of the parallelepiped 

\Lt\ <1 (1 < l < Jc). 

Suppose that px ^ ^ pk > 0 and that 

Pl^l ^ ••• ^ Pk^k’ Pl---Pk = !• 

Then for some permutation p[, ...,pk of px, ...,pk, the successive minima 

AJ,.... AJj. of the parallelepiped p\ \L^ < 1 (1 < l ^ Jc) satisfy 

pl^l Aj /0;Aj (1 < l < k). 

Proof. There certainly exist linearly independent integer points 

x1( ...,x& such that one at least of \LX\,..., \Lk\ assumes the value A, at 

x„ and we denote by St the space spanned by xx.x,. Further, for 

each l ^ 2, there is a non-trivial linear relation a1L1 +... + a{L; = 0 

satisfied identically on Sl_1, and Lv...,Lk can be permuted so that |a,| 

is maximal; this gives 

|£jJ +... + |4-i| > id^il + ••• + \Lt\) 

identically on Sl_x, whence by induction 

141 + ... + \Lt\ >#-*(|4| + ... + 141) 

identically on Sl for l = 1, 2,..., k. Now for any j it is clear that every 

point in S} not in Sj_x satisfies 

max (|4|> •••> |4|) > Ay, 

and thus, in view of the inequality obtained above, it satisfies also 

max(p1\L1\,...,pk\Lk\)p pjhj. 

By hypothesis, pyAy ^ p,A; for j ^ l, and the required lower bound for 

AJ follows on taking p'x,...,p'k to be the permutation of px, ...,pk 

inverse to that associated with Lx,...,Lk. The upper bound is a conse¬ 

quence of the equationpx...pk = 1 together with the property, noted 

earlier, that Xx...Xk and X[...Xk are both 1 and > 1. 

Lemma 7. The last two minima of the parallelepiped of Lemma 5 

satisfy Xk_x > Xkprk^, provided that X1pi > pr^ for all i in S. 

Proof. The hypotheses of Lemma 6 hold with Lt (1 ^.l ^k) given by 

pf1Ml and 
Pi — p!\ (1 < l < k), pk — p/Xk_x, 
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where p is defined by the equation px... pk — 1. Let p[,p'k be the 

permutation of pv ...,pk indicated in the lemma,and let p!x = 

Assume first that p\ ^ 1 for all i in S. Then from Lemma 5 with /q 

replaced by p'x, we infer that, for any £' > 0, there exists c' > 0 such 

that > p'^', where p' denotes the maximum of p'1,...,p'k and c'. 

On the other hand, from Lemma 6, Ak_x Pu-i^k-i = P> an(i clearly, 
since Ax... Xk 1, we havepk Ak_xIAk. Thus it suffices to prove that 

p'Z p^ if £' is chosen sufficiently small. But by hypothesis, since S is 

assumed non-empty, we have Axp > p~£; further, since Ax ^ At for 

all l, we see that p^> A1 and Ai_1A7._1 1. Hence we obtain 

p' < pAk~xlp < pKh < pk(Z+1)+1, 

and the required result follows. If, contrary to the above assumption, 

p\ < 1 for some i in S, then, on observing that by hypothesis 

pp\ > Axpi > pS, 

we obtain p > p~% and the required result again follows. 

9. Exterior algebra 

For any vectors x1;..., x; in Rk with 1 < l < k, one denotes byxx a ... ax, 

the vector in Rm whose elements are the m = subdeterminants of 

order l formed from the k by l matrix with columns xT,..., x;. We shall 

utilize some well-known properties of this product; in particular, we 

shall require Laplace’s identity 

(Xj A ... A x,) (yt a ... A Yj) = det (x^), 

where on the left one has the usual vector dot product, and also the 

relation det A(r = (det A )lm*k, 

which holds for any matrix A of order k with column vectors av ..., ak, 

say, where A^ = afi A ... A a.i; and cr runs through all sets of l distinct 

integers iv ..., ix from 1,..., kJ 

We shall need, in addition, the following lemma, due to Mahler, on 

compound convex bodies. A will signify a matrix as above with 

det A = 1, and, as in § 8, constants implied by will depend only on k. 

Further we shall denote by ax the linear form in the elements of x with 

coefficient vector a. 

t Short proofH am given in Hohmidt’a tract (Bibliography). 
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Lemma 8. The successive minima Ax,..., Afc and vx, ...,vm of the 

parallelepipeds |aix| ^ 1 (1 ^ i ^ k) and lA^X| < 1, respectively, 

satisfy Ar. AT. (1 < i < m), 

where r runs through all sets a as above, AT = IIA^, the product being taken 

over all j in t, and ATj < ATa < ... ^ ATjb. 

Proof. Let xx,..., x& be linearly independent integer points such that 

|aix^| 3$ X] (1 < j < k), and let XTbe defined like Aa above, with x in 

place of a. By Laplace’s identity we have 

|A„.Xt| = |det(afx})| < m\XT, 

where i, j run through all elements of a, r respectively. Hence, for 

each i with 1 ^ i ^ m, we have lA^X^I Arj and so vi XT(. But 

since, by hypothesis, det A = 1, we have det Aa = 1, and thus the 

volume of the parallelepiped lA^Xl < 1 is2m. Thus 1 and 

since ATl... Arm 1 it follows that vl > A,., as required. 

10. Proof of main theorem 

It will suffice to prove Theorem 7.1 under the assumption that 

al,...,an are real algebraic integers, for clearly the general result then 

follows on multiplying each a,- by the leading coefficient in its minimal 

polynomial. We shall signify by a3- (1 < j ^ n) the vector in Rn+1 given 

by (e}, af), where eX) ...,en denote the rows of the unit matrix of order n. 

Further, for brevity, we shall write k = n+1, and we shall denote by 

afe the vector (0, ..., 0, 1) in Rk. Constants implied by < or > will 

depend only on oq,..., an, k, e and the quantities £, £tobe defined below. 

We show first that the theorem is a consequence of the following 

proposition. 

For any £ > 0 and any positive numbers /tx,..., pk with /q... pk — 1 

and fij < 1 (1 3$ j < k), the first minimum Ax of the parallelepiped 

|a^x| < fi] (1 < j < k) exceeds/i~t if/i^>jilc and fi > 1. 

The proof proceeds by induction on n; we have already remarked 

that the case n = 1 is an immediate consequence of Lemma 5, and we 

assume now that the theorem holds when n is replaced by n— 1. Let 

q be a positive integer satisfying the inequality occurring in the 

enunciation, and let 

h = qeKin)\\qctj\\ (i < j < n). 
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Further let pk = pn)~x, where k = n +1 as above. Then clearly 

fik > q1+ie and moreover the first minimum Ax of the parallelepiped 

|a3-x| < /q (1 ^ j < k) is at most But, on appealing again to the 

given inequality and applying the inductive hypothesis, we see that, 

if q > 1, then pt < 1 for all j < k. Hence the proposition above shows 

that A1 > fi~£ for any £ > 0 and any p with p > 1 and p > pk. Further¬ 

more, by the case n = 1 of the theorem, we have p^ > q~x (1 ^ j < to), 

whence pk ^ qn. Plainly the estimates for Ax are inconsistent if £ is 

sufficiently small, and the contradiction proves the theorem. 

Preliminary to the proof of the proposition, we observe that, with 

the notation of § 9, the linear forms Mr — Ar X satisfy the hypotheses of 

§ 7 with S given by those sets r which include k. For it is easily verified 

from the Laplace expansions of A that, as a- runs through the comple¬ 

ment of r in 1, ...,k, the forms ACTX constitute the set adjoint to the 

Mt, except possibly for a sign change; further, if cr does not include k. 

we have 
Ao-X = X<r+S( ± otj) Xv_j+k, 

where the summation is over all j in cr, on the right there occur the 

co-ordinates of X, and c—j + k denotes the set cr with 1c in place of j. 

By hypothesis 1, av ..., an are linearly independent over the rationals, 

and thus we see that A^X 4= 0 for all integer vectors X 4= 0, as required. 

The proof of the proposition proceeds by induction on k; the result 

plainly holds for k = 2 by Lemma 5, and we assume now that it has 

been verified for all values up to k — 1. Let l be any integer with 

1 < l < k and, for any set r of l distinct integers from 1, ...,&, let 

pT = Tlpp where the product is over all j in r. By Lemma 7 we see that 

the successive minima iq,..., vmoi the parallelepiped \Mr\ ^ pT satisfy 

vm_i > vmp~kZ for any £ > 0, provided that p > 1, p > pr for all r and 

vlpT > p~£ for r in S. Further, with the notation of Lemma 8, it is clear 

that Tm and Tm_k consist of the integers lc — l+l,k — l + 2,...,k and k — l, 

k — l + 2,...,krespectively. Thus, under the above conditions, we have 

^k-i^k-i+2 • • • A* ^k-i+i • ■ ■ ^kf1 k^> 

that is Afc_; > Afc_J+lytt_fc?. The required inequality Ax > p~£ follows on 

applying the latter with l = 1,2, — 1, noting that A*. > 1, and 

taking £ sufficiently small. 

Since evidently pT < pk for all r, it remains only to prove that, for r in 

S,vlpT > p~t for any p with p >jl and p > pk. In fact it suffices to show 

that Aip]11 > p~t, for, again from Lemma 8, we have v1 > A,... A, > . 

Now, by the definition of At, the parallelepiped |a;x| < A,/c}. (1 < j < k) 
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contains an integer point x 4= 0; in fact the &th co-ordinate of x is not 

0 since Ax ^ 1 by Minkowski’s linear forms theorem, whence 

1 (1 < k), 

and ajX is simply the y th co-ordinate of x when the &th co-ordinate 

vanishes. It follows that, if r is any element of S, then the parallel¬ 

epiped in Rl given by |aix| < where i is restricted to r and the 

co-ordinates of x with suffixes not in r are disregarded, also contains an 

integer point x 4 0. Hence the first minimum A^ of the parallelepiped 

|a{x| 5? n\ in Rl, where (i\ — Pih$l, is at most Aj/4'*- It is therefore 

enough to prove that A^ > but this follows from the inductive 

hypothesis since clearly Il/tJ = 1 and jiT> 1. The theorem is herewith 

established. 
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MAHLER’S CLASSIFICATION 

1. Introduction 

A classification of the set of all transcendental numbers into three 

disjoint aggregates, termed S-, T- and 17-numbers, was introduced by 

Mahlert in 1932, and it has proved to be of considerable value in the 

general development of the subject. The first classification of this 

kind was outlined by Maillet* in 1906, and others were described by 

Pema! and Morduchai-Boltovskojbut to Mahler’s classification 

attaches by far the most interest. 

As in the previous chapter, we define the height of a polynomial as 

the maximum of the absolute values of its coefficients, and we shall 

speak of the height only for polynomials with integer coefficients, not 

all 0. Let now £ be any complex number, and for each pair of positive 

integers n, h, let P(x) be a polynomial with degree at most n and height 

at most h for which |P(£)| takes the smallest positive value; and define 

o)(n,h) by the equation |P(£)| = h~nu/-n-h). Further define 

wn = lim sup o)(n, h), w = lim sup wn, 
h—> CO 71 —> co 

and let v be the least positive integer n for which wn = oo, writing v = oo 

if, in fact, wn < oo for all n. Mahler characterizes the set of all complex 

numbers as follows: 

A-number w = 0, v = oo, 

/S-number 0 < « < oo, v = oo, 

P-number w = oo, v = oo, 

17-number w = oo, v < oo. 

We shall prove in § 2 that the A-numbers are just the algebraic 

numbers; thus a transcendental number £ is an /5-number if w(w, h) is 

uniformly bounded for all n, h, a 17-number if, for some n, (o(n, h) is 

unbounded, and a P-number otherwise. Further we have: 

t J.M. 166 (1932), 118-36. 
i Bibliography. 
§ (Horn. Mat. Bating Uni, 52 (1914), 305-63. 
II Mat. Sbomik, 41 (1934), 221-32. 
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Theorem 8.1. Algebraically dependent numbers belong to the same 

class. 

Theorem 8.2. Almost all numbers are S-numbers. 

Here ‘almost all’ is interpreted in the sense of Lebesgue measure 

theory, the linear and planar measures being taken for the real and 

complex numbers respectively. 

The integer v defined above is called the degree of £. It is clear that 

the Liouville numbers, mentioned in Chapter 1, are 17-numbers of 

degree 1, and LeVequeT proved in 1953 the existence of U-numbers of 

each degree; we shall establish the latter in § 6. For many years it was 

an open question whether any T-numbers existed but, in 1968, an 

affirmative answer was obtained by Schmidt1 on the basis of Wirsing’s 

early version of Theorem 7.2, and this will be the theme of § 7. It is 

customary to subclassify the /S-numbers according to ‘type’, defined 

as the supremum of the sequence mv «2,.... We shall show in § 2 that, 

for any transcendental £, ton is at least 1 or |(1 — 1/n) according as £ is 

real or complex, whence the type of £ is respectively at least 1 or \. In 

1965, Sprindzuk, confirming a conjecture of Mahler, proved that 

almost all real and complex numbers are /S-numbers of type 1 and \ 

respectively. Moreover it was recently demonstrated by a refinement 

of this result that there exist /S-numbers of arbitrarily large type. Thus, 

apart from a small gap in the kind of T-numbers that have so far been 

exhibited, the transcendental spectrum is, in a sense, complete. The 

latter measure-theoretical propositions will be the topic of the next 

chapter. 

In the light of Theorem 8.2, one would expect any naturally defined 

number such as e, n, e” and log a for algebraic a not 0 or 1 to be an 

/S-number. In 1929, Popken proved that indeed e is an /S-number of type 

1, and we shall confirm the result in Chapter 10. Theorem 3.1 shows 

that 7r, and in fact any non-vanishing linear combination of logarithms 

of algebraic numbers with algebraic coefficients, is either an S- or a 

T-number, but the latter possibility has not, as yet, been excluded. 

From the case n = 1 of Theorem 7.1 one sees, for instance, that 
CO 

2 a-6” is transcendental for any integers a ^ 2, b ^ 3, and, in the 
n= 1 
same context, Mahler5 proved in 1937 that also the decimal -1234..., 

t J. London Math. Soc. 28 (1953), 220-9. 
{ Symposia Math. IV (Academic Press, 1970), pp. 3 -26. 
§ N.A.W. 40 (1937), 421-8. 
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where the natural numbers are written in ascending order, is tran¬ 

scendental; and here again it has been proved that these are either S- 

or T-numbers.t For e”, however, the possibility that it is a Liouville 

number has not even been excluded at present. Note that, by virtue 

of Theorem 8.1, the above results enable one to furnish many examples 

of algebraically independent numbers; indeed if £ is any 17-number, 

such as for instance 210~n!, and if rj is, say, e or n or 210~10” or Mahler’s 

decimal, then certainly £, rj are algebraically independent. 

In 1939, Koksma introduced a classification closely analogous to 

that of Mahler, which has also proved illuminating.* Let £ be any 

complex number and for each pair of positive integers n, h, let a be an 

algebraic number with degree at most n and height at most h such 

that |£—<x\ takes the smallest positive value; and define w*(n, h) by 

the equation 
|£—a| = h~na‘(n‘h)-x. 

Koksma classified the complex numbers as A*-, S*-, T*- or U*- 

numbers in the same way as Mahler, but with to* in place of w. Thus 

a transcendental number £ is an S*-number if to*(n, h) is uniformly 

bounded, a f/*-number if, for some n, oo*(n,h) is unbounded, and 

a 7T*-number otherwise. There is an exact correspondence between the 

two classifications, the S*-, T*- and 17*-classes being in fact identical 

with the S-, T- and 17-classes respectively; moreover, the functions 

wn and to* take comparable values. Indeed it is easily verified that 

oj* < o)n, and simple lower bounds for to* in terms of wn were obtained 

by Wirsing.5 These imply, in particular, that w* = 1 when o)n = 1, 

whence, in view of Sprindzuk’s theorem, we have (o* = 1 for almost all 

real £. But it remains an open question whether w* ^ 1 for all real £. 

2. ^-numbers 

We prove here that the .4-numbers are just the algebraic numbers. 

Suppose first that £ is a real transcendental number. We consider the 

set of all numbers Q(£), where Q denotes a polynomial, not identically 0, 

with degree at most n and with integer coefficients between 0 and h 

inclusive. The set evidently contains (A+ l)n+1— 1 elements each with 

absolute value at most ch for some c = c(n, £). If now we divide the 

interval [—ch,ch] into hn+1 disjoint subintervals each of length 2chrn, 

then there will be two distinct numbers £>i(£) and Qa(£) in the same 

t Acta Math. Ill (1964), 97-120. 
} For referenooH and furthor (lincugmon goo Kchnoidor (Bibliography). 
} J.M. 206 (1961), 67-77. 
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subinterval. Thus the polynomial P = Q1 — Q% satisfies |P(£)| < 2ch~n 

and so (on ^ 1. Similarly, if £ is complex, we divide the intervals 

[ — ch, cK\ on the real and imaginary axes into at most hfrn+1) disjoint 

subintervals each of length at most c'h~^n~X) for some c' = c'(n, £), and 

there will be two distinct numbers Qt{£) and Q2(£) with real and 

imaginary parts in the same subintervals. Thus we have 

Now if £ is algebraic with degree m, then for any polynomial P as 

above, P(£) is an algebraic number with degree at most m and height at 

most ch for some c = c(n, £). Hence either P(£) = 0 or |P(£)| > c'h~m 

for some c' = c'(n, £) > 0. It follows that noj(n, h) is uniformly bounded 

for all n, h, and this proves the assertion. 

3. Algebraic dependence 

Our purpose here is to prove Theorem 8.1. Suppose that £, y are 

algebraically dependent. Then they satisfy an equation Q(£, y) = 0, 

where Q(x, y) is a polynomial with, say, degree k in x, l in y, and with 

algebraic coefficients, not all 0. Without loss of generality we can 

suppose that £, rj are transcendental, for otherwise they would both 

be algebraic and so belong to the same class; also we can suppose that 

the coefficients of Q are rational integers, for this can evidently be 

ensured by taking, in place of Q, a product of its conjugates. Moreover 

we can suppose that all the zeros = £, £2,..., £k of Q(x,7}) are tran¬ 

scendental; for if one of these were algebraic then its minimal defining 

polynomial, say p(x), would divide all the coefficients of Q(x,y) 

regarded as a polynomial in y, and it would therefore suffice to con¬ 

sider Q(x, y)jp(x) in place of Q(x, y). 

Let now P and w(n, h) be defined as at the beginning of § 1 and put 

J = P&)...P(4). 

Clearly we have | J\ < c1A-n“(n,w+fc-'1, 

where cx, like c2, c3 below, depends only on £, y, n and Q. Further, J is 

symmetric in £x.and so, by the fundamental theorem on sym¬ 

metric functions, it can be expressed as a polynomial in the elementary 

symmetric functions with total degree at most n and with height at 

most c2hk. Now each elementary symmetric function is given by 

± Q.jko> where 

Q(x>y) = 2<> (y)^k + Qi(y)xk~1 + ...+qk(y). 
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Hence q% J is a polynomial in r) with degree at most In and height at 

most h' = c3hk. If therefore (o'{n, h'), (o'n and «' are defined for rj in the 

same way as (o(n, h), o)n and w were defined for £, we have 

Jl'Inot' (In, h') ^ fc+1 

This gives klnio'ln > na)n — k +1, whence klo/ > w. Similarly, on inter¬ 

changing £ and y we obtain kloj ^ w' and Theorem 8.1 follows. 

4. Heights of polynomials 

We establish now two lemmas which will be employed in the proof of 

Theorem 8.2 and in the next chapter. The propositions will be proved 

for polynomials with arbitrary complex coefficients, and here no 

restriction will attach to the definition of the height. P(x) will denote 

a polynomial with degree n and height h, and constants implied by 

or > will depend only on n. 

Lemma 1. For some integer j with 0 < j ^ n we have 

h < |-P(j)| ^ A- 

Proof. It is readily verified that 

n 

P(X) = 2 
i=o 

P(j)A(x) 

A'(j) (x-jy 

where A{x) = x(x — 1)... (x — n), and A' denotes the derivative of A. 

Now we have |.<4'(j)| > 1, and clearly also the coefficients in the poly¬ 

nomials A(x)/(x—j) are 1. Thus we see that |P(J)| > h for some j, 

and obviously we have |P(j)| <€ h for all j. This proves the lemma. 

Lemma 2. If P = P]P2... Pk, where Pi is a polynomial with height 

hi’then h1ht...hk^h^h1ht...hk. 

Proof. The right-hand estimate follows at once from the observation 

that every coefficient in P can be expressed as a sum of 1 terms each 

given by a product of k coefficients, one from each of the Pf. 

To establish the left-hand estimate, we begin by choosing an integer 

j to satisfy Lemma 1, and we denote by Hj the height of the polynomial 

P{(x+j)- It is clear, on expressing P{(x) as a polynomial in x—j, that 

hi Ht. Now if v) is any zero of P(x +j), we deduce from the mean value 

theorem h ^ |/J(j)| = |/^+j)_P(j)| = |*|\PU+j)\ 

7-2 



90 MAHLER'S CLASSIFICATION 

for some £ with |£| ^ \rj\. Hence if |^| < 1, we have h |^| h, that is 

|t/| > 1. But the zeros of Pi(x+j) are included in those of P(x+j), and 

each coefficient in P^x+j) can be written as the product of the con¬ 

stant coefficient P{(j) together with an elementary symmetric function 

in the reciprocals of the zeros. Thus we obtain |P^j)| > Ht, and the 

lemma follows since P(j) — P^j) ...Pk(j). 

5. 5-numbers 

We proceed now to prove Theorem 8.2 for complex numbers in terms 

of planar Lebesgue measure; the argument for real numbers is similar. 

Again we shall speak of the height only for polynomials with integer 

coefficients. 

We note first that if £ is any complex number and P is any irreducible 

polynomial with degree at most n and height at most h, then the 

nearest zero a of P to £ satisfies 

|£-«| *S2»|P(£)||P'(a)|-*; 

for if a' is any other zero of P we have 

|a-a'| ^ |£—a| + |£—a'| ^ 2|£-a'|. 

Further we observe that |P'(a)| > h~n\ for if p denotes the leading 

coefficient of P and if a1;..., am are any distinct conjugates of a then, 

on applying Lemma 2 with Pi given by x — cc^ one sees that the 

algebraic integer* pax... a.m is < h, whence the norm of P'(a) multiplied 

hyp”-1 is hn\P'(a) |. If now £ is a P- or U-number then, by Lemma 2, 

there exist, for some n, infinitely many polynomials P as above such 

that |P(£)| < h~in, and so the nearest zero a of P to £ satisfies 

|£—a| h~3n. Hence every T- and [/-number belongs to the elements 

of infinitely many sets S(n, h) for some n, where S(n, h) consists of all 

discs centred on the algebraic numbers with degree at most n and 

height at most h, and with radius h~2n. But there are hn+1 elements 

in each S(n, h) and thus their total area is h~2. Since Yhr2 converges, 

it follows that the set of all T- and [/-numbers has measure zero, as 

required. 

6. [/-numbers 

We establish here the existence of [/-numbers of each degree. In fact 

we shall show that, for any positive integer n, £1,n is a [/-number of 
00 

degree n, where £=$ + 2 10-ml. Indeed we shall prove, more 
m*= 1 

f It is well known that this is an algebraic integer; see e.g. Hecke (Bibliography). 
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generally, that £ is a [/-number of degree n if there exists a sequence 

txv a2,... of distinct algebraic numbers, with degree n, satisfying 

ls-«/l < *r**t (!) 
where denotes the height of oq and oq ->■ oo as j -> oo, provided that, 

for some 1, we have h)<h^<hp (2) 

for all sufficiently large j. Clearly £ = £1,m satisfies (1) and (2) with 

oq = {Pj/qj)lln, where 

p} = 103'!(l + 3 £ 10-ml), qt = 3.10*', 

and with h)j=j,r = 2; also oq has exact degree n since is not a perfect 

power. 

It suffices to show that if (1) and (2) hold then there are only finitely 

many algebraic numbers ft with degree at most n — 1 satisfying 

|£-/?| < *r<2re>v, (3) 

where b denotes the height of ft. For then n is the least positive integer 

for which there exist sequences oq, a2,... and wx, w2,... as above 

satisfying (1), whence £ is a [7*-number of degree n and so also a 

[/-number of thesamedegree. To verify this connexion between U- and 

[/♦-numbers, note that if Pftx) is the minimal defining polynomial of oq 

then (1) gives, for all sufficiently large j, 

|Py(£)| < h^+n < hri-i, 

where the implied constant depends only on £ and n, and, conversely, 

if there were a sequence of polynomials Pft x) (j = 1,2,...) with degree 

at most n—1 and height at most such that |/)•(£)] < hfai then the 

nearest zero oq of P} to £ would satisfy (1) with oq replaced by ojftn. 

Now suppose that ft is an algebraic number with degree at most n—1 

such that (3) holds, and let j be the integer which, for b sufficiently 

large, <a*&. ^ < ^ < ^ (4) 

in the sequel we shall write briefly a, h, w for oq, hp oq. From (1) and 

(3) we have ^ |g_a| + \£-ft\ < h-* + b-wrt 

and, from (2) and (4), the terms on the right are at most (bh)~2ni, 

provided that (o > 4w*. On the other hand, ex,—ft is a non-zero algebraic 

number with degree at most na, and each conjugate has absolute value 

bh, where the implied constant depends only on n; further, the 
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same estimate obtains for the leading coefficient in the minimal 

defining polynomial. Hence 

and thus we have a contradiction if b is sufficiently large; the contra¬ 

diction establishes the result. 

We remark finally that the inequality |a — /?| > (ab)~n* implicit in 

the above argument, where a, /? denote distinct algebraic numbers 

with degrees at most n and heights a, b respectively, and the implied 

constant depends only on n, can be much improved. Indeed, by 

considering the norm of a — /? and using the result employed in § 5 on 

products of conjugates of algebraic numbers, one easily obtains 

|a — /?| > a~lb~m, where l, m denote the degrees of the fields generated 

by /? over Q(x) and a over Q(fi) respectively. A special case of the 

latter inequality was discovered by A. Brauer1' in 1929, but, curiously, 

the full result was recorded only relatively recently.1 

7. T-numbers 

These exist, as we now show. To begin with, let ava2,... be any non¬ 

zero algebraic numbers and let iq, v2,... be any real numbers exceeding 

1. We shall prove that there exists a sequence y1,y2> ••• of non-zero 
numbers with y3-/a3- rational such that, if hj denotes the height of y3-, 

then Hj+1 > 2H}, where Hj = h"), and furthermore, yj+1 lies in the 

interval /3- consisting of all real x with 

{Hy1 < x-yj < IHf1; 

in addition, we shall show that the sequence can be chosen so that, for 

some numbers Ax, A2,... between 0 and 1 exclusive, we have 

for all algebraic numbers /? with degree n 4, j distinct from yt,..., y}, 

where B = A"1^3^4 and b denotes the height of /?. Clearly then, 

yv y2,... tends to a limit £ which satisfies |£ — /?| ^ for all algebraic 

numbers ft distinct from yt,y2,..., and also 

inj1 H-' 

for all j. We now take i>3- = (3n3-)4, where n3 denotes the degree of a3-, 

t J.M. 160 (1929), 70-99. 
J For references and further work in this contoxt, see Michigan Math. J. 8 (1961), 

149-69 (R. Gating). 
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and we select ocv oc2,... so that the equation n} = n has infinitely many 
solutions for each positive integer n. Then £ is a 21*-number and hence, 
by observations similar to those recorded in § 6, also a T-number. 

We shall in fact construct yvy2,... so that four further conditions 
are satisfied. Let Jj be the set of all x in Ij such that \x—fi\ > 2B~l 
for all algebraic numbers /? with degree n < j which are distinct from 
y1; ...,yj and satisfy B > H}. Then we shall ensure that (i) yi is in 
Jj-i, (ii) the measures of li and Jj satisfy \Jj\ > \ \Ij\, (iii) we have 
\yj—> 2B-1 for all /? 4= y} with degree j, (iv) if y3-/a3- = Pjfqj as a 
fraction in its lowest terms, with q} > 0, then |y3-—/?j > qj1 for all /? 
with degree n ^ j and with b3n < q}. 

To define y1; we note first that, for every large prime qv there are 
> qx numbers y of the form (pjqx) ai in the interval (1,2), where the 
implied constant depends only on a1( and these have mutual distances 
> gj1. Further, there are gf rationals /? with b3 < qx and so there are 
<| q\ numbers y satisfying |y—f}\ < qi1 for at least one such /?. We can 
therefore select yx so that (iv) holds, and then, by Theorem 7.2, we can 
choose Ax so that the conditions concerning \yx-fi\ are satisfied. We 
shall show in a moment that also (ii) holds in the case j = 1 if qx 1. 

Now suppose that y1(..., y3-_x have already been defined to satisfy 
the above conditions; we proceed to construct y}. Constants implied 
by or > will depend only on the numbers so far specified, including 
possibly A1;..., A^. First let J'j_x be defined like Jj_x but with the 
additional restriction that the heights of the /? in question satisfy 
b3n < qj. Clearly the number of /?for which the latter inequality holds 
is gf and so J'_x consists of gf intervals. Further, J'j_x includes 
Jj_x and so, by (ii), we have |</'■_!| > $|2)_1| > 1. It follows that, for 
any large prime q}, there are > qx numbers y in J'j_x of the form 
(Pj/qj) otj, where pt is an integer q} with (p3-,g3-) = 1. Furthermore, 
any such y is in fact in Jj_x, for if the height of /? satisfies b3n > qj then 
B > qfn)i and thus, on noting that (qjlPj) /? has height qfb, we obtain 
from Theorem 7.2 

\y-fi\ > 2,r1(2?&)_3n > 2B~1- 

Now, as above, there are gf numbers /? satisfying the hypotheses of 
(iv) and hence one can select y = y^ in Jj_x so that this condition is 
valid. Then clearly we have |y^—/?| > B1 for all /? distinct from 
7i> • • • > Yj-i whh degree n < j and with B > Hj_x, and indeed this holds 
also for B ^ IIj-X, for then, taking k as the least suffix > re for which 
B < IIk and appealing to (i) or (iii) with j = k according as k > re or 
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k = n, we obtain 

\7i~P\ >\yk-P\-\yi-7k\ > zb-1-^1 > b-1. 

We now use Theorem 7.2 and choose A3- so that |y3- —/?| > 25_1 for all 

algebraic numbers /? 4= y3- with degree n = j. 

It remains only to show, as in the case j = 1, that (ii) will be satisfied 

if q} is sufficiently large. Now we have \x—f}\ > 2B~X for all x in 7}- and 

all /? 4= y- with degree n < j and with H- < B < H^. For if ft371 < g3-then, 

since > qvy and Vj > 1, it follows from (iv) that 

\X~P\ > \7i-P\-\7i-x\ > 7jrl-^rl > > 2B^> 
and if b3n > g3- then, on appealing again to Theorem 7.2, we obtain 

\x-fi\ > qjxn%b~3n-Hjx > B-i-B-i > 2B~\ 

Hence any x in the complement of Jj in 7?- satisfies \x — fi\ < 2B~X for 

some /? with degree n < j and with B > EPr But the number of /? with 

degree n and height b is bn, and so the complement has measure 

'LB~xbn, where the sum is over all n, b with n < j and B > BP.. This 

is plainly Hj2 < \Hyx, and the required result follows. 

It will be seen that the above argument allows one to construct a 

7-number with o)n taking any value > (3re)4. This can easily be 

reduced to a bound of order re2, but at present, apparently, not readily 

to one of order re as would be needed to fill the spectrum. 
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METRICAL THEORY 

1. Introduction 

As remarked previously, Mahler conjectured in 1932 that almost all 

real numbers are ^-numbers of type 1 and almost all complex numbers 

are ^-numbers of type -|-.t He originally proved that, certainly, they are 

both of type at most 4, and 4 was reduced to 3 and f in the real and 

complex cases respectively by Koksma in 1939. LeVeque improved 

these in 1953 to 2 and §, and Volkmann further reduced them in 1964 

to f and §. Moreover, proofs of Mahler’s conjecture in the special cases 

with n = 2 and n — 3 were given by Kubilyus, Kasch and Volkmann. 

Finally, in 1965, Sprindzuk* obtained a complete proof of Mahler’s 

conjecture for all n, and indeed with the best possible value of wn. 

We shall establish here a refinement of Sprindzuk’s result which was 

derived by the author in 1966.8 Denoting by xjr(h) a positive monotonic 

decreasing function of the integer variable h > 0 such that Hi\jf{h) 

converges, we prove: 

Theorem 9.1. For almost all real 6 and any positive integer n there 

exist only finitely many polynomials P with degree n and integer coefficients 

such that |P(0)| < (ft{h))n, where h denotes the height of P. 

A similar result holds for almost all complex numbers 0 with the 

exponent n replaced by \(n — 1). It is clear from, for instance, 

Minkowski’s linear forms theorem, that the assertion would not 

remain valid with fr{h) — 1/h, and indeed it is easily verified that 

almost no 0 would have the properties required in the case n = 1 if 

Yi\jr(h) were divergent. But it seems likely that the function {\jr(h))n 

can be replaced by h~n+1i/r(h), and this conjecture has in fact been 

established for n ^ 3. 

The theorem has recently been applied to evaluate the Hausdorff 

dimension of certain sets; in particular, it has been employed to show 

that, for any A > 1 and any positive integer n, the set of all real £ such 

that, for any A' < A, there exist infinitely many algebraic numbers ft 

f M.A. 106 (1032), 131-0. 
X Bibliography; thin contain* references to the earlier works. 
} Proc. Roy. Sor. Lotuton, A 292 (1000), 02-104. 

[08] 
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with degree at most n satisfying |£—< £Hn+1>A', where & denotes 

the height of /?, has dimension 1/A. This generalizes a well-known 

theorem of Jarnik and Besicovitch; and it immediately implies the 

result mentioned in the last chapter on the existence of ^-numbers of 

arbitrarily large type.1- 

Various avenues for further investigation are suggested by the work 

here. For instance it would be of interest to obtain results analogous 

to Theorem 9.1 for polynomials in several variables, and in fact some 

progress in this connexion, more especially for cubic polynomials in 

two unknowns, has been made by R. Slesoraitene.1 In another direc¬ 

tion, it follows from Theorem 9.1, by a classical transference principle, 

that, for any e > 0 and any positive integer n, there exist, for almost 

all real 6, only finitely many positive integers q such that 

max Ig^H < q-Wn)~e (1 ^ j ^ n), 

and this raises the problem of confirming the stronger proposition in 

which the above inequality is replaced by 

q1+e\\qd\\ ...||g0n|| < 1, 

where the notation is that of Theorem 7.1. The problem seems quite 

difficult. 

2. Zeros of polynomials 

We record here, for later reference, some simple inequalities con¬ 

cerning the distances between the zeros of polynomials. Let P(x) be a 

polynomial with degree n and distinct zeros Klt ...,Kn. We note first 

that if d is any real number with \6 — /q| ^ \d—Kj\ for all j then 

|P(0)| >2-*\P'(K1)\\d-K1\, (1) 

where P' denotes the derivative of P. For clearly [atx — /c3-1 < 2\6 — /c^|, 

and we have p, _ 
r \Kl) — a\Kl *2)'"\Kl Kn)> 

where a denotes the leading coefficient of P. Similarly we obtain 

> 27»|P'M 10-^1*. (2) 

Further we observe that if \d — /Cj| ^ |kj — k^\ for all j ^ 2 then 

\d-Kj\ < 21/Cjl — | and so 

|P(0)| <2»|P'(*1)||0-*1|. (3) 

t Proc. London Math. Soc. 21 (1970), 1-11 (A. Baker and W. M. Schmidt). 
I See various papers in Litovak. Mat. Sb. sinoe 1909; see also Sprindluk’s address in 

Actes, Congris international math. (1970). 
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Now suppose that P(x), Q(x) are polynomials with integer coeffi¬ 

cients and degree n ^ 2; let their leading coefficients be a, b and then- 

zeros be kv ..., Kn and Als..., Am respectively, all of which are supposed 

to be distinct and have absolute values at most K. We shall write, for 

brcTity- = 

and we shall denote by q the analogous function of Q. Our purpose is 

to prove that if |/q —k2| s? l/q-zql for all j > 2, if — /c2| < p~i, and 

if also the analogous inequalities hold for Q, then 

l/q-AJ > min (p~l, q~*). (4) 

where the implied constant depends only on n and K. 

For the proof, we suppose that (4) does not hold and we shall obtain 

a contradiction if the implied constant is sufficiently large. First we 

observe that [/q — k}\ > p~i for ally > 3. This is a consequence of the 

fact that the discriminant of P, namely 

a2”-2 n(Ki-K3-)2> 
i<j 

has absolute value at least 1; for, in view of the inequality | /q — /q | <<c 1 

valid for all i, j, it follows that 

I(*i - k») (*2- «j) I > (j > 3), 

and, by hypothesis, we have 

|/c2— /q| < 2|/q — Kj\ and | /c-l — /ca| < p~b. 

Hence, from the converse of (4), we obtain |/q — /q| > |/q — AjJ and so 

1^ —Ai| < \Kf-^l + l^-A,! ^ \Kf-Kj] 

for all j > 3. This gives 

|om_1P(A1)| ^ | (a-! Ax) (/ca — Ax)|, (5) 

and, plainly, an analogous inequality holds for Q. 

We now use the fact that the absolute value of the resultant of P 

and Q, namely |afe|nIT |/q — A^|, is at least 1. Since |— A^| 1 this 

glveS |a6|—1 |-P(AX) ©(#ci) (jc, - A.) (jcx - Ax)-i| > 1 

and so, from (5) and its analogue for Q, we obtain 

|(*i-*i)(*i-A,)(ic»-A1)(ic1-A2)| Xpq)-1. (6) 

Further, by the converse of (4) and the hypothesis |/Ci — /c2| ^ p~ 1 we 
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have |/c2 — Ax| p~i and similarly |kx-A2| q~i. Furthermore we 

see that |/c2_A2| < |/c2-/C].| + — A2| ^ max(p-l, q~i). 

But this together with (6) implies the validity of (4), contrary to 

supposition. The contradiction proves the assertion. 

3. Null sets 

Let now xjr be any function as in § 1 and, for any positive integer n and 

any real 9, let &{n, xjr, 9) be the set of all polynomials P satisfying the 

hypotheses of Theorem 9.1. The theorem asserts that the set &(n, xjr) 

of all 6 for which n, xjr, 6) contains infinitely many elements has 

measure zero. We shall show here that it suffices to establish the 

following modified result. 

The set SP{n, xjr) of all 9 for which tP(n, xjr, 0) contains infinitely many 

polynomials P that are (i) irreducible and (ii) have leading coefficients 

which exceed the absolute values of the remaining coefficients, has measure 

zero. 

We begin by observing that, for any 9 in &(n, xjr), there exists, by 

Lemma 1 of Chapter 8, an integer j with 0 < j < n such that infinitely 

many polynomials P in &{n, xjr, 9) satisfy |P(j)| > h\ and by taking 

— P in place of P if necessary we can suppose that P(j) > 0. It clearly 

suffices to show that the set of 9 in M(n, xjr) which corresponds to a 

fixed integer j has measure zero, and this is equivalent to proving that 

the translate, consisting of all numbers £ = 6—j, has measure zero. 

Now £ satisfies |P(£+j)| < {fr(h))n for all P in iP(n, xjr, 9), and P(x+j) 

is a polynomial in x with height at most Ch for some C depending only 

on n. Further, there is a positive monotonic decreasing function cr(h) 

such that Scr(A) converges, <r(h) > xjr(h) and cr(h)jcr(Ch) ^ 202; indeed 

one can take <r(l) = 2^(1) and 

h(h-l)<r{h) = £ {2k-2)xjr(k) (h > 2), 
2 

n n m 

whence £ cr(h) = 2n~x £ £ xjrfjh), 
h—l m=lfc=l 

and so Scr(fe) = 2'Lx]r(h). Hence £ is an element of M{n, <f>), where 

<f> = 2(Per, and infinitely many polynomials P in £P(n, <f>, £) have 

constant coefficients exceeding ch for some c > 0, depending only on n. 

For any such P, the polynomial Q(x) = xnP( 1 /x) has leading coefficient 

exceeding ch and hence R(x) = Qic^x) satisfies (ii), assuming that 
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c < 1. Moreover, R(x) has height at most c~nh, and also integer coeffi¬ 

cients if c 1 is an integer. Furthermore, for any positive integer k and 

any £ as above with |£| > the number rj — c£-1 satisfies 

\R(rj)\ < (k$(h))n. 

It is plainly enough to prove that the set of all such rj has measure zero; 

for given a covering of the j/’s by intervals Ilt72,..., we obtain a 

covering I[, 7^,... of the £’s, where 7J consists of all car1 with x in and 

with |a?| > ir1, and clearly we have |7'| ^ 72|73-|. Thus, on utilizing 

again the above construction of a, we see that it is necessary now only 

to show that the set (n, tjr) of all 6 for which &{n, i/r, 6) contains 

infinitely many polynomials which satisfy (ii) but not necessarily (i), 

has measure zero. 

Here we use induction. Clearly the sets and ,i/r) are 

identical and so the required result holds for n = 1. We assume that, 

for any ijr, the sets 3$(m, ijr) with m < n are null and that also £f{n, tjr) 

is null, and we proceed to prove that then each .T(n, ijr) is null. For 

every 6 in ,T{n, rjr), infinitely many P in ^(n, r/r, 6) satisfy (ii), and if 

infinitely many of these were irreducible then 6 would be in i/r) 

and the required result would follow. Hence we shall suppose that all 

the P are reducible. Then each contains as a factor at least one 

polynomial Q with integer coefficients and degree m < n satisfying 

|Q(0)| < {^(k))n\ further, infinitely many of the P correspond to a 

fixed integer m and, unless 6 is algebraic, there will be infinitely many 

distinct polynomials among the associated Q. Now appealing to 

Lemma 2 of Chapter 8 and employing for a third time an averaging 

construction as above, we conclude that a function 0 exists such that 

every 6 in &~{n, i/r) is in one at least of the sets 5?(m, 0) with m < n. 

Each of these is null by the inductive hypothesis and so^n, ijr) is null, 

as required. 

4. Intersections of intervals 

We establish here a further simple measure-theoretical result needed 

for the proof of Theorem 9.1. 

For each positive integer h, let <%(h) be a finite set of real closed 

intervals, and let 'f'Qi) bo a subset of ^(h) such that for each 7 in if (h) 

there is a J #= 7 in ^{h) with 17 n J\ > $ 171. Further let W and w be the 

set of points contained in infinitely many V(h) and in infinitely many 

v(h) respectively, where V(h) is the union of the points of the intervals 
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/ of (&), and v(h) is that of the intervals I (\J with I in (h) and 

J =f= I in ^/(h). Our purpose is to prove that if w is null then so also is W. 

We have . . ,,, 
w = n u vQi), 

1<to<oo ftjsm 

and thus, if w is null, then, for any e > 0, there is an integer m such 

that, for all n ^ m, the union of the v(h), taken over all h with 

m < h < n, has measure at most e. Now this union consists of a finite 

set of disjoint intervals and, by the definition of 'f, we see that the 

set obtained on expanding each of these intervals symmetrically about 

its centre to three times its length will cover all the V(h) taken over 

the same range of h. Thus, for every n ^ m, the latter set has measure 

at most 3e, and, on noting that W can be expanded like w above with 

V in place of v, the assertion follows. 

5. Proof of main theorem 

By virtue of § 3, it suffices to show that every set <S?(n, \jr) has measure 

zero. It is easily verified that <5^(1, r/r) is null and we shall assume that 

Sf(m,rjr) is null for m < n; we proceed to establish the result for 

m = n ^ 2. 

Let J2(n,h) be the set of all polynomials with degree n, integer 

coefficients and height h satisfying (i) and (ii) of §3. Further let 

kv ...,Kn be the zeros of any element P of J(w, h), and let 

Tj = min \Ki-Kj\, 

where the minimum is taken over all i =|= j. By (i) we have Tj > 0 and 

from (ii) we obtain |/Cj-| < n, since clearly 

\P{x) — hxn\ < wAmax (1, 1). 

Suppose now that ^ is any function as in § 1, let 

Vj = 2n\P’(Ki)\~1(f{h))n (1 < j < »), 

and let I) = 2j(P) be the interval (possibly empty) formed by the 

intersection of the real axis with the closed disc in the complex plane 

with centre x3- and radius 

h = min{vp (TjVji}. 

From (1) and (2) we see that every element of <Sf(n, tjr) is contained in 

infinitely many for some j, where </j(h) denotes the set of all 

Ij{P) as P runs through the elements of J(w, h). We proceed to prove 
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that the set of points contained in infinitely many ^(h) has measure 

zero; the proof when j > 1 is similar and this will therefore suffice to 

establish the theorem. There is now no loss of generality in assuming 

that the zeros of P are so ordered that t1 = |/cx — /c2|. 

We divide the polynomials P in £(n, h) into two disjoint classes, 

placing P in s/(n, h) if tx > p~i and in £§{n, h) otherwise, where p is 

defined as in § 2, with a = h. We denote by Jf(h) and SP{h) the union 

of all /i(P) as P runs through the elements of (n, h) and 8§{n, h) 

respectively. Then clearly the union of Jf'(A) and I£{h) is just ^(h) 

and it suffices to prove that the set of points contained in infinitely 

many Jf’(A) and likewise the set of points contained in infinitely 

many h) have measure zero. 

We prove first that Jf is null. Since fr(h) is positive monotonic 

decreasing and converges, we have hijr(h) -* 0 as h -* oo and so 

there is no loss of generality in assuming that i/r(h) < h_1 for all h. 

For each P in s/(n, h), let I = I(P) be the interval formed by the 

intersection of the real axis with the closed disc in the complex plane 

with centre kx and radius {rjrQb))-1 /q. Clearly Ix <= / and | ^ ft(h) |/|. 

We denote by &(h) the set of all I(P) and by ^(h) the maximal subset 

of %(h) possessing the property specified in § 4. Retaining the notation 

of that section, we proceed now to show that w is null. First we observe 

that every d in I(P) satisfies 

< h-™\p'(Kl)\-i = i (*!-*,)!> i(?) 

provided that h is sufficiently large; and the number on the right is at 

most by the definition of s/(n, h). Hence (3) holds and so 

|P(0)| ^ 2»|P'(x1)| {xir{h))~^v1 = 2*»(^(A))— 

Now if 0 were also a point of I(Q) for some Q 4= P in s/{n, h) then the 

polynomials — P — Q would satisfy |S(d)| ^ 22n+1(i/r(h))n~1. Further, 

from (ii), we see that R has degree at most n — 1 and height at most 2h. 

But, for every 6 in w, there exist infinitely many distinct R with these 

properties and thus, on appealing again to the construction in § 3, it 

follows that w is contained in the union of sets 3${m, <j>) for a suitable 

function <j>, where 1 < m < n. Our inductive hypothesis together with 

the result of § 3 shows that .^(m, <f>) is null for each m, and hence w is 

null, as required. 

We conclude from § 4 that W is null and thus to complete the proof 

that is null it is necessary only to verify that the set of points in 

infinitely many .5T(A), with those /t(P) excluded for which the corre- 
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sponding 7 is in i^(h), has measure zero. Now if 7(P) and I(Q) are 

distinct elements not contained in 'f'(h) then 

|i(P)n/(<2)| <imin(|/(P)|,|/(0)|). 

This implies, as one readily verifies, that no point can be contained in 

three distinct intervals I(P) not inP'(A). Further, all I(P) are included 

in [ — 3n, 3n], for we have \kj\ ^ n and, as above, \Q — /Ci| < tx for every 

9 in I(P). Hence the total length of all I(P) not in ir (h) is at most 12n. 

The corresponding 7X(P) have therefore total length at most 12nijr(h), 

and that is null follows immediately since converges. 

It remains to prove that SC is null. For each positive integer k, let 

^(rifk) be the union of the sets C8(n,h) with 4*-1 ^ h < 4*, and, for 

each integer l, let #(n,k,l) be the subset of n,k) consisting of all 

polynomials P with 4,_1 ^ p < 4*. Then, by (7), for each P in *£{n, k, l), 

71(P) has length at most 

2^ 2(rx rx)i (4_I+1^(4*-1))I 2~l~k, 

where the implied constants depend only on n. Further, if 71(P) is not 

empty then the imaginary part of kx is at most juv It follows from (4), 

on applying a simple box argument to the interval [ — »,»], that, if 

jfc > 1, then the number of polynomials P in %(n, k, l) for which 7X(P) is 

not empty is 2l+ 1. Hence the total length of all 7X(P) with P in 

#(n, k, l) is 2~k{2 A + 1). But from the estimates in § 2 relating to the 

discriminant of P we see that p > 1, and clearly also p <<c 4tnk. Thus, 

for any n and k, the number of non-empty sets ^(n, k, l) is k, and, 

for such sets, we have 2-1 1. We conclude that the total length of all 

71(P) with P in ^(n, k) is k2~k, and that SC is null follows from the 

convergence of £&2~*. This completes the proof of the theorem. 
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THE EXPONENTIAL FUNCTION 

1. Introduction 

In a classic memoir of 1899, Borelf obtained a refinement of Hermite’s 

theorem on the exponential function and thereby established the first 

measure of transcendence for e. He proved that, for any positive 

integer n, there are only finitely many polynomials P with integer 

coefficients and degree n satisfying |P(e)| < h~&h\ where h denotes the 

height of P and <f>(h) = clog log h for some c = c(n) > 0. Borel’s result 

was much improved by Popken* in 1929; Popken showed that <j>{h) 

can be replaced by n + e(h), where e(h) = c/log log h with c = c(n) > 0, 

and this plainly implies that e is an ^-number of type 1. Mahler8 later 

derived an explicit expression for c of the form c'n2log (n+ 1), where 

now c' is absolute. 

In 1965, a generalization of Popken’s result similar to Theorem 7.1 

was established by the author," and this will be the subject of the 

present chapter. 

Theorem 10.1. For any distinct, non-zero rationale 6lt ...,6n and 

any e > 0 there are only finitely many positive integers q such that 

ql+e ||gre0i|| ... ||ge9»|| < 1. 

The theorem plainly yields all the corollaries recorded after Theorem 

7.1 with 04,..., an replaced by e9s..., e9n, and indeed Theorem 7.2 holds 

with a replaced by e9 for any non-zero rational Q. Furthermore, in 

contrast to the work of Chapter 7, the arguments here enable one to 

replace e by a function e(q) tending to 0 as q -> oo, namely c(log log q)~i 

where again c = c(n) > 0. 

The proof of the theorem involves techniques similar to those intro¬ 

duced by Siegel in his studies on the Bessel functions, which will be 

discussed in the next chapter. In particular, Dirichlet’s box principle 

will be employed to construct certain linear forms in e9ix,.e°»x with 

polynomial coefficients that vanish to a high order at the origin. Linear 

forms of this kind occurred in the works of Popken and Mahler, but 

t C.R. 128 (18BB), 5B8-B. J M.Z. 29 (1U20), 525-41. 
| J.M. 166 (1032), I IK AO. || Ctmatlian ./, Math 17 (1005), 016 26. 
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there they were derived explicitly by means of analytic integrals. 

Clearly Theorem 10.1 improves upon the Popken-Mahler theorem 

except when the polynomial P has coefficients that are, in absolute 

value, nearly all equal, and then the earlier work is slightly stronger 

in view of the more rapidly decreasing function e. Feldman! has 

shown that the techniques used here furnish a function e(q) of order 

(log log g)-1 for certain series closely related to the exponential 

function. 

The arguments of this chapter do not extend easily to furnish 

Theorem 10.1 for algebraic 6V ...,6n. Some results in this context were 

obtained in the original paper of Mahler, but they would seem to be 

far from best possible. In fact, even in the most precise analogue of 

Theorem 7.2 established to date, taking a = ee with 6 algebraic, the 

exponent of B tends rapidly to — oo as the degree of 6 increases.* 

Nevertheless, a construction similar to that employed in §2 below 

yields at once a negative answer to the power series analogue of a 

well-known problem of Littlewood. Littlewood asked whether, for 

any real 0, <j> and any e > 0, there exists a positive integer q such that 

2 Ml Ml <e; 
the series 0 = e1,x, <j> = e2^ provide a counter-example to the analogue,5 

but the problem itself remains unsolved. And the latter recalls to mind 

another outstanding question in Diophantine approximation, namely 

whether every continued fraction with unbounded partial quotients is 

necessarily transcendental; this too seems very difficult. 

2. Fundamental polynomials 

We suppose that 61,...,6n are distinct rationals and that 0 < e < 1. 

Constants implied by or > will depend on these quantities only. 

As before, whenever we speak of the height of a polynomial it will be 

understood that its coefficients are integers. We shall denote by 

the jth derivative of a function/, or/' in the case of the first derivative. 

Lemma 1. For any positive integers rv ..., rn with maximum r > 1, 
there exist polynomials Pt(x) (1 < i ^n), not all identically 0, with 

degrees at most r and heights at most r{\ rer, such that P{/>(0) = 0 for 

t V.M. 2 (1967), 63-72. 
j Cf. Ann. Univ. Sci. Budapest, 9 (1066), 3-14 (Luise-Charlotte Kappe). 
$ Michigan Math. J. 11 (1964), 247-50. 
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j < r — rt, and 
Y,Pi{x)e°ix= 2 pmxm, (1) 

i=l m—M 

where \pm\ < (r!/m!) and 

M = rx+ ...+rn + n — 1 — [er]. 

Proof. Let L be the maximum of the absolute values of Qx,..., Qn and 

let l be the least common multiple of their denominators. We take p# 

to be 0 for all integers i, j other than the N = r1 +... + rn + n pairs 

given by 1 < i < n and r — rt < j < r, and we then define p{j for these 

remaining values as integers, not all 0, satisfying 

n m /fn\ 

S 2 , 0?-n™Vij = 0 (0 < m < M). (2) 
i=i j=o \3 / 

Such integers exist by virtue of Lemma 1 of Chapter 2, and indeed 

they can be selected to have absolute values at most 

H = {N(2lL)-w}M^MK 

We proceed to prove that the polynomials 

Pi(%) = r\ 2 (1 <i <n) 
3=0 

have the required properties. 

First we observe that, on expanding e°ix as a power series in x, we 

obtain n 
2 Pi(x)ePiX = r! 2 

1=1 m=0 

where, for each m, lmcrm is given by the left-hand side of (2). Hence (1) 

holds with pm— (r\/m\)(rm. Further we have M < N < 2nr and 

N — M > er, whence 

H < {2nr(2lL)2nr}2n>e < r\a. 

Since pi} — 0 for j < r — ri it follows that the coefficients of the P^x) 

have absolute values at most 

r\H 

{r-rf. 

Also it is clear that 

r*!rer. 

|<rm| < n(m + 1) (2lL)mH < re<r+m\ 

and this proves the lemma. 

Lemma 2. Let Pi}(x) (1 < i < n,j > 1) be defined recursively by 

P<x(x) “ l\,j t i(x) " f\j(x) t Pij(x). 
8-2 
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If ri > 2s for all i, where s = [er] + (n— 1 )2, then the determinant A(x) of 

order n with P^x) in the ith row andjth column cannot have a zero atx = 1 

with order greater than s. 

Proof. We shall show in a moment that none of theP^x) is identically 0; 

at first we assume this. Then each Pi has a non-zero leading coefficient 

pt say. Since clearly Pi}(x) has degree at most r and leading coefficient 

Pidl-1, it follows that A (a;) is a polynomial with degree at most nr and 

with leading coefficient p1---pn'<p', where tjr is a Vandermonde deter¬ 

minant of order n formed from the powers of the 0i. By hypothesis, the 

di are distinct and so A(x) is not identically 0. 

We suppose now, as we may without loss of generality, that r = rx. 

Denoting the left-hand side of (1) by O(x), we clearly have 

<I>(5'-1)(a;) = S Py{x)eeix. 
i=1 

Hence A(x) remains unaltered if the first row is replaced by e~°i Xd>l'i~1\x) 

with,? = 1,2, On differentiating (1), we see that d>0)(x) has a zero 

at x = 0 with order at least M —j; and clearly Pif(x) has a zero at x = 0 

with order at least r-r*— j + 1. Hence A(x) has a zero at x = 0 with 

order at least n 

M—n-1-1 + S (r — rt—n + l) = nr — s, 
i= 2 

and the lemma follows since A(x) has degree at most nr. 

It remains only to prove the original supposition. We suppose that 

exactly k of the polynomials P{(x) do not vanish identically and, 

without loss of generality, that these are given by i = 1,2,..., k. Also 

we assume, as clearly we may, that r = rt for some i with k ^ i ^ n. 

Now, as above, we see that the minor in A(x) formed from the first 

k rows and columns is a polynomial, not identically 0, with degree at 

most Jcr. On the other hand, on taking a linear combination of rows, it 

is clear that it has a zero at x = 0 with order at least 

M — k+1+ £ (r-rf-k+i) ^ (ifc-l)r-s-l- £ rt. 
i=1 i~k 

By virtue of the hypothesis r{ > 2s for all i, it follows that k = n, and 

this completes the proof of the lemma. 

Lemma 3. There are n distinct suffixes J(j) (1 ^ j ^ n) between 1 and 

n + s inclusive such that the determinant of order n with P^ J(i) (x) in the 

ith row andjth column does not vanish at x = 1. 
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Proof. We introduce linear forms in wx, ...,wn by the equations 

H5= £*»«(*)«>, 0'= 1,2,-..). (3) 
1 = 1 

If Ay (a;) is the minor in A(a;) formed by omitting the ith row and jth 
column then 

Wi&(x) = S (— l)<+i WJ Aw(ar) (1 < i < n). (4) 
3 = 1 

By Lemma 2, there is an integer t < s such that A<4)( 1) =1= 0 and we 

suppose that t is the least such non-negative integer. Now regarding 

the Wj as differentiable functions of x and differentiating (4) t times, 

replacing the w\ occurring at each stage by widi (as we may since the 

resulting equations hold identically in the wi and w[) we obtain 

Aw,(a:))=iw>(i<<^ 
where the Ftj(x) are polynomials given by linear combinations of the 

Ay(a;) and their derivatives. Hence the linear forms defined by (3) 

with x = 1 and with 1 ^ j < n +t, include a set of n linearly inde¬ 

pendent forms, and the lemma follows with J(j) (1 ^ j ^ n) given by 

the associated suffixes. 

Lemma 4. There are integers qti (1 ^ i,j ^ n), forming a non-zero 

determinant, such that \qi}\ < ri!r4er and 

2 q^1 < r\rienr ( II . (5) 
i=1 \i=l / 

Proof. In fact the integers qtj = ln+sPitj(j)( 1) have the required pro¬ 

perties. Indeed the first assertion follows from Lemma 3 and the 

second from the obvious upper estimate rfi (r + L)irer for the absolute 

values of the coefficients of Pi}. Further, with the notation of Lemma 2, 

the sum on the left of (5) is given by l“+sO,r(^-1(l), and, on differ¬ 

entiating (l)h ^ n + s—1 times, we obtain 

|<j>(ft)(l)| <r!r«- 2 r*m((m — A)!)-1. 
m—M 

But the sum on the right multiplied by (M-h) 1 is clearly at most 

erreM, and we have 

(M-h)\ #s (r1 + ...+rn-2«)I > (nr)-2*(rx +... + rj!. 

Since M < $ nr and a < Jer, this gives (5). 
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3. Proof of main theorem 

The proof can now be completed readily by means of the Geometry of 

Numbers.t Let d1.0n be distinct non-zero rationale and suppose 

that £ > 0. Constants implied by or > will depend on these 

quantities only. For brevity we put k = n+ 1, and we signify by Ak 

the vector (e9i, ...,ee», 1) in Rk. Further we signify by A}- (1 < n) 

the jth row of the unit matrix of order k. We proceed to show that, for 

any numbers /ix, ...,/ik with fix .../ik = 1 and /ij > 1 (1 < j < k), the 
first minimum Ax of the parallelepiped |A?-x| < /i} (1 < j < k) exceeds 

if /ij [i for all j and /i > 1. 

In fact it suffices to show that the last minimum Xk of the parallel¬ 

epiped is ft£ln, for we have ... Xk > 1 and so Ax > Xkn. We shall 

apply Lemma 4 with n replaced by k and with 6k = 0. We take r = rk 

to be the least positive integer for which /i < r! r~4er, and we then take 

rv ...,rn to be the integers satisfying 

(Tj-iy. < /qr4er < rJ.. 

Clearly r is the maximum of rv ...,rk and we have r > 1 and rt > 4er 

for all i; in particular, the hypothesis of Lemma 2 is satisfied. Further, 

from Stirling’s formula we see that 

H > (r— \)\r_4er > rlr, 
and so, by Lemma 4, 

ka\ < < a<a20c- 

Further, the right-hand side of (5) is at most 

rier(Mi — < /“fcA20€» 

and since the determinant of the qi} is not 0, it follows that Xk < /i20e. 

This gives Ax > if e is sufficiently small, as required. 

Finally, we apply Lemma 8 of Chapter 7 with l = n — k— 1. 

Denoting by a3- (1 ^ j ^ k) the vectors defined at the beginning of § 10 

of Chapter 7 with eei in place of a}, we conclude that the first minimum 

iq of the parallelepiped |a^x| < /ij1 (1 < k) satisfies 

vx > Ax... A, ^ A^ 

and so iq > /i~%. Hence the main proposition of § 10 holds, and 

Theorem 10.1 now follows by the argument immediately succeeding. 

f For an alternative argument see the author’s memoir in Canadian J. Math. 17 
(1665). 
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THE SIEGEL-SHIDLOVSKY 
THEOREMS 

1. Introduction 

In 1929 Siegelf obtained a general method for establishing the 

algebraic independence of the values of a certain class of power series 

satisfying systems of linear differential equations. Siegel called the 

power series in question ^/-functions. By this he meant series of the 

form ^ 00 
2 anxn/n\, 

n—0 

with o0,eq,... elements of an algebraic number field such that, for 

some sequence b0,bv... of positive integers and for any e > 0, 

bna0, ...,bnan and bn are all algebraic integers with size nen, where 

the implied constant depends only on e; here the size denotes, as in 

Chapter 4, the maximum of the absolute values of the conjugates. 

It is clear that the exponential function is an ^/-function, and indeed 

so is the normalized Bessel function 
» ( _ 1 \n (lr\2n 

*><*> ' r<A + „i(A + i)% + n) 

for all rational values of A other than the negative integers. More 

generally, any hypergeometric function 

y [«!,»]-fo,»] 

is an ^-function, where k = m — l > 0, 

[y,»] = y(y + i)--- (y + »-i), 

and the a’s and /?’s are rationale other than negative integers. The 

latter assertion follows in fact from the observation that, for any 

rational a = pfa, the integer qn[a, ri\ divides n\ v, where v denotes the 

least common multiple of all the positive integers up to 

™ = (bl + M)»; 
and from the prime-number theorem we have v < cm for some absolute 

t Abh. Prru**. A kail. W'mj. 1020, N». I. 

I l<>« I 
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constant c. Furthermore, it is readily verified that sums, products, 

derivatives and integrals of ^-functions are again ^-functions. 

Siegel’s work related to differential equations of the first and second 

orders only, and it was an outstanding question for many years to 

devise a means of extending the arguments to higher order equations. 

The problem was solved by Shidlovsky ^ in 1954 and many notable 

applications have followed.* The basic result concerns ^-functions 

Ex(x), ...,En(x) satisfying a system of homogeneous linear differential 

equations n 
Vi= 2 fn(x)yi (1 < i < »), (!) 

J=1 

where the fit are rational functions of x, and the coefficients of all the 

E’s and/’s are supposed to be elements of an algebraic number field K. 

We have then 

Theorem 11.1. If Efx), ...,En(x) are algebraically independent 

over K(x) then, for any non-zero algebraic number a distinct from the 

poles of the fipE^a), ...,En(a) are algebraically independent. 

The theorem can easily be extended to yield an assertion to the 

effect that the maximum number of algebraically independent 

elements among Ex{x), ...,En{x) is the same as that among 

E1(a),...,En(a), 

and moreover there is no difficulty in generalizing the latter result to 

inhomogeneous equations where an additional rational function is 

present on the right of (1). As an immediate application of Theorem 

11.1, we see that if A is rational, but not a negative integer or half an 

odd integer, then Kx{a) and K'x(a) are algebraically independent for 

every non-zero algebraic number a; for it is well known5 that Kx(x) 

and Kx(x) are algebraically independent over Q(x). This further 

implies, for example, that the continued fraction with partial quotients 

1,2,3,... is transcendental; for J0(J( — 4a:)) [= K0(J( — 4m))] satisfies 

the differential equation xy" + y' = y, and the continued fraction in 

question is given by yjy' evaluated at x = 1. Oleinikov" has obtained 

some similar theorems for third order linear differential equations; 

for instance he has shown that if 

00 (s/3)3» 

[> nZont[A,n][p,ny 

t I.A.N. 23 (1959), 35-66. 
£ Cf. the survey of Feldman and Shidlovsky (Bibliography). 
$ Cf. Siegel (Bibliography). || D.A.N. 166 (1966), 540-3. 
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where A, // are rationale such that none of X+fi, A —2p, p — 2A are 

integers, then F{x), F'(x), F"{x) satisfy the hypothesis of Theorem 11.1, 

whence F(a), F'(a), F”(a) are algebraically independent for every non¬ 

zero algebraic number a. And Shidlovskyt has proved a striking 

theorem to the elfect that if 

®*(*) = S xknl{n\)k, 
n=0 

then, for any non-zero algebraic a and any r, the numbers ^(a), with 

1 < i < &, 1 < & < r, are algebraically independent. Plainly also 

Theorem 11.1 includes Lindemann’s theorem. 

2. Basic construction 

The proof of Theorem 11.1 follows closely the arguments of the 

preceding chapter, but it is no longer a simple matter to confirm that 

A(a;) does not vanish identically. The verification, which is Shidlovsky’s 

major discovery in the subject, will be given in Lemma 2 below. 

We shall signify by E^x), ...,En(x) ^/-functions as above, linearly 

independent over K(x) and we shall suppose that 0 < e < 1. Constants 

implied by or > will depend on the coefficients in the E’s, f’s and 

on e only. By f(x) we signify a polynomial, not identically 0, with 

coefficients in K, such that is a polynomial for all in (1). 

Lemma 1. For any integer r > 1, there are polynomials 

Pi(x) (1 < i < n), 

not all identically 0, with degrees at most r and algebraic integer coefficients 

in K with sizes at most (r!)1+e, such that 

2 Pi[x)Ei{x) = S pmxm, (2) 
{=1 m—M 

where \pm\ < r\ (m!)-1+e and 

M = n(r+1)— 1 — [er]. 

Proof. Let ai} be the coefficient of xj/j! in E{(x) and let bi0, bn,... be the 

sequence of integers associated with E{ as in §1. By Lemma 1 of 

Chapters, there exist algebraic integers pi} (1 < i < n, 0 < j < r)m.K, 

f Trutiy Motkov. 18 (1968). 56-64. 
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not all 0, such that 

n min(r,m) fm\ 

S S . K«*-^ = 0 (3) 
i=i y=o v/ 

and indeed they can be selected to have sizes at most 

where N = n(r +1) and S = (e/4w)2; for, on multiplying (3) by 

blm... bnm, the coefficients become algebraic integers in K with sizes 

2MMiSM, as is clear on taking Sj(2n) in place of e in the defining 

property of the b’s. We conclude, as in the proof of Lemma 1 of 

Chapter 10, that the polynomials 

Pi(x) = r! i; (1 < i < n) 
3= 0 

have the asserted properties. In fact (2) plairdy holds with 

Pm = (r'./m\)<rm, 

where <rm denotes the left-hand side of (3), and since M < N < 2nr and 

N — M > er, we see that the have sizes at most n", whence 

|<rm| < (m!)e for m ^ if, as required. 

Lemma 2. Let P{j(x) (1 < i ^ n, j ^ 1) be defined recursively by 

Pil = Pi> =fP'ijJrf 
h— 1 

Then the determinant A(x) of order n with Pi}(x) in the ith row and jth 

column is not identically 0. 

Proof. Suppose, on the contrary, that A(x) vanishes identically. Let k 

be the integer such that the first k columns of A(x) are linearly inde¬ 

pendent over K(x) but the (k+ l)th column is linearly dependent on 

these. We signify by 0 the matrix formed by the first k columns of 

A(x), and by R and S the matrices formed from the first k rows of 0 

and last n — k rows respectively. We assume, as clearly we may, that 

the notation is such that R is non-singular, and we proceed to prove 

that the degrees of the numerators and denominators of the rational 

function elements of SR-1 are 1, where in fact the implied constant 

depends only on the/’s. This will suffice to establish the lemma; for 

denoting by L the row vector with Jth element 

P) = 2 (1 ^ j ^ k), 
t=i 
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and putting A = (Ev ...,Ek), B = {Ek+1, ...,En), 

we have L = AR+ BS whence 

LR! = A + BSR1. (4) 

But L} satisfies the differential equation Lj+1 = fL'} and so each element 

of L has a zero at x = 0 with order at least M — n. Further, each element 

of R-1 can be expressed as a rational function in if (a;) with denominator 

det R, and since the latter is a polynomial with degree at most kr + c, 

where c ^ 1, it follows that each element of LR_1 has a zero at x = 0 

with order at least M—kr — n — c. On the other hand, the vector on the 

right of (4) cannot vanish identically in view of the assumed linear 

independence of Ex,...,En, and the order of the zeros of its elements 

at x = 0, if any, are bounded independently of the coefficients of the 

elements of SR-1, and so, in particular, of r. Now k < n, and so M—kr 

tends to infinity with r; hence we have a contradiction if r is suffi¬ 

ciently large. 

To prove the assertion concerning SR-1, we observe first that there 

is a square matrix F of order k, with elements in K(x), such that, for 

any solution y of (1), the vector Y = yO satisfies the differential 

equation Y' = YF. Indeed if Yj denotes the jth element of Y, then 

yi+i = fY'j for all j < k and, by the definition of k,fY'k is expressible 

as a linear combination of Y^ ...,Yk with coefficients inK{x). Let now 

w1}..., wn be power series solutions of (1) linearly independent over K 

and let W be the square matrix of order n with jth row w^-. Then each 

row of WO is a solution of Y' = YF; but this has at most k solutions 

linearly independent over K and thus there exists an n — k by n matrix 

M with coefficients in K and rank n — k satisfying MWQ = 0. 

Denoting by U and V the matrices formed from the first k columns of 

MW and the last n — k columns respectively, we have UR + VS = 0. 

Since R is non-singular and MW has rank n — k it follows that V is 

non-singular and so SR-1 = — V-1U. Clearly the elements of V-1U are 

rational functions in the elements of W with coefficients in K and with 

the degrees of the numerators and denominators bounded inde¬ 

pendently of r. Hence they can be expressed as quotients of linear 

forms in certain monomials in the elements of W, linearly independent 

over K(x), the coefficients in the linear forms being rational functions 

in K(x) for which again the degrees of the numerators and denominators 

are bounded independently of r. Since the elements of SR-1 and so also 

of V-1U are in fact in K(x), they must be given by quotients of such 

coefficients, and the assertion follows. 
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3. Further lemmas 

We now obtain analogues of Lemmas 3 and 4 of Chapter 10. The 

arguments here will follow closely their earlier counterparts and so we 

shall be relatively brief. 

By a we shall signify an element of K with a/(a) 4= 0. By c1; c2,... 

we denote positive numbers which may depend on a,e and the 

coefficients in the E’s and/’s only. 

Lemma 3. There are distinct suffixes J(j) (1 ^ j < n) not exceeding 

er+Cj such that the determinant with j(j)(x) in the ith row and jth 

column does not vanish at x = a. 

Proof. We begin by noting that A(x) remains unaltered if the first 

row is replaced by f with j - 1,2 ,...,n, where f is defined as in 

the proof of Lemma 2. Hence A(x) has a zero at x = 0 with order at 

least M — c2, and since it is a polynomial with degree at most nr + c3, 

it follows that a non-negative integer t exists, not exceeding 

nr + c3 — (M - c2) < er + c4, 

such that A(t)(a) =t= 0; we suppose that t is chosen minimally. 

We now introduce linear forms in wx, ...,wn by (3) of Chapter 10. On 

applying the operator fdfdx to (4) of that chapter t times, replacing 

w\ occurring at each stage by the right-hand side of (1) with y} — Wp 

we obtain n+t 

»*(/(«))* m*) = S W}W (1 ^ * < n), 
i=i 

where the Fi} denote polynomials in x given by linear combinations of 

the/’s, A’s and their derivatives. Hence the linear forms 

Wj (1 ^ j ^ n + t) 

with x = a include a set of n linearly independent forms and the 

lemma follows with J(j) given by the associated suffixes. 

Lemma 4. There are algebraic integers qti (1 ^ i,j ^ n) in K with 

sizes at most (r\)1+We forming a non-zero determinant and satisfying 

2 qM<*) 
<«1 

(i j < »)■ (5) 

Proof. Let l be a positive integer such that la and the coefficients in 
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If and all ljfi} are algebraic integers. We proceed to prove that the 

numbers ^ = jr^n+^P^a) (i »), 

where m denotes the maximum of the degrees of thejffy and /, have the 

required properties. First it is clear that PPi} has algebraic integer 

coefficients and degree at most r+mj. Thus the q’s are algebraic integers 

and, by Lemma 3, they form a non-zero determinant. Further, it is 

easily verified by induction that the sizes of the coefficients of VPi} are 

at most (r + mj)2i c{(r\)1+e, and since the J(j) do not exceed er + clt this 

gives the required estimate for the sizes of the q’s. 

It remains to prove (5). Denoting by G>(a;) the left-hand side of (2), 

it is clear that the sum on the left of (5) is given, apart from a factor 

by (Jdjdx)J~1<P evaluated at x = a, where J = J(j). But, 

again by induction, we see that this is a linear form in the Ow(a), where 

h = 0,1, 1, having coefficients with absolute values at most 

(c6J)2J. Hence it suffices to prove that 

|d>W(a)| < (r!)-n+i+8e» (o sg h < J). 

Now from Lemma 1 we obtain 

|<D(W(a)| < r\ E (ml)e((m — fe)!)_1|a 
m=M 

and the sum on the right is at most 

m—h 

M 2 (m!)~1+e2m|a|”,_ft ^ Mc^(M\)~1+e. 
m=M 

Since h < er + c± and M 4, 2nr we have h\ 4 (r!)3e and 

M\ > (2nr)~er{r\)n > (r!)”-3*. 

The required estimate follows at once. 

4. Proof of main theorem 

Suppose that F1(a), ...,En(a) are algebraically dependent. Then they 

satisfy an equation P(E1.En) = 0, where P is a polynomial with 

algebraic coefficients, not all 0. We shall denote by c the degree of P, 

and we shall assume, as we may without loss of generality, that the 

coefficients in P are algebraic integers in K. The degree of K will be 

denoted by d, and we shall suppose that 0 < e < 1. Further we shall 

signify by m an integer such that the binomial coefficients 
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satisfy k — l< lj(2d); the latter inequality certainly holds for all 

sufficiently large m since k and l are asymptotic to mn/n) as m -> oo, 

as is easily seen by expressing them as polynomials in m with degree n. 

In the sequel, constants implied by or > will depend on a, e, m and 

the coefficients in the E’s, /’s and P only. 

Let now Sx,...,Sk be the ^-functions E{i... Ety, where jx, ...,jn run 

through all non-negative integers with jx+... +jn < m + c. Then 

clearly £x,...,£k satisfy a further system of linear differential equations 

of the form (1), where the new coefficients are given by linear com¬ 

binations of the/’s; furthermore, Sx, <ok are linearly independent 

over K(x) by virtue of the hypothesis regarding the algebraic in¬ 

dependence of Ex(x), ..., En(x). We conclude from § 2 and § 3 that, for 

any integer r > 1, there exist algebraic integers qt]- (1 ^ i,j ^ k) in 

K possessing the properties cited in Lemma 4 with <ox, ...,<ok in place 

of Ex,...,En. For each set of non-negative integers jx,...,jn with 

ji+ ••■+.?» < m we write 

E{i...Ej*P(Ev...,En)=* hpv*t, 
<=i 

where the ptj are either coefficients in P or 0, and j = j(jx,... ,jn) takes 

the values 1,2, Then on the right we have l linear forms in 

£x,...,$k linearly independent over K, all of which vanish at x = a. 

Since the determinant of the q^ is not 0, it follows that there exist k — l 

of the forms k 

i= 1 

which together with the latter make up a linearly independent set; 

without loss of generality we can suppose that they are given by 

<1*1+1,..., We shall suppose also, as clearly we may, that <^(a) 4= 0. 

We now compare estimates for the determinant D of order k with 

pi} in the ith row and jth column for j < l and qxj in that position for 

j > l. Plainly D is a non-zero algebraic integer in K, and, since p^ 1, 
it has size (r IjCi+iee) (fc—o. hence 

|D| > (r !)—0-+16C) (ft-Od ^ (J.!)-a+16e)i/2> 

On the other hand, D is unaltered if the first row is replaced by 0 
for j < l and by Sxx{a) <t>y for j > l. Further, by Lemma 4, the latter 

elements are < (r!)-fc+1+1Sefc; thus 

|jD| (r!)<1+16e>(fc-I-l)-*+l+18efc ^ (rfj-l+32.ek 

But k < f Z and so, if e < and r is sufficiently large, we have a con¬ 

tradiction. This proves the theorem. 
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Subsequent to the fundamental discovery of Shidlovsky, researches 

in this field have largely centred on establishing the function-theoretic 

hypotheses of Theorem 11.1 and its extensions for particular classes of 

©-functions, and, as indicated in § 1, this has in fact been accomplished 

in many striking cases. Studies have also been carried out in connexion 

with obtaining positive lower bounds for expressions of the type 

P{E1.En) as above, and in fact an estimate of the form Ch~° has 

been established, where h denotes the maximum of the sizes of the 

coefficients of P and C, c are positive numbers which do not depend 

on h; but c here increases rapidly with n.^ The main outstanding 

problem in the subject is to generalize the theory to wider classes of 

analytic functions than .©-functions, and any progress here would be 

of much interest. 

t Cf. Lang (Bibliography, first work). 
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ALGEBRAIC INDEPENDENCE 

1. Introduction 

Few theorems have been established to date on algebraic, as opposed 
to linear, independence of transcendental numbers. Indeed, apart from 
the results on .©-functions discussed in the last chapter, which in fact 
follow at once from their linear analogues, and the examples men¬ 
tioned in Chapter 8 that arise from the properties of Mahler’s classi¬ 
fication, the only work in this context of a general nature is based on 
studies of Gelfondt carried out in 1949. Recently a number of authors 
have obtained important improvements in this connexion, and these 
latest developments will be the theme of the present chapter. 

The essential character of the results is well-illustrated by: 

Theorem 12.1. If both £i> £%> £3 and rjx, 7}z, 7)z are linearly inde¬ 
pendent over the rationals, then two at least of the numbers 

£i, tf*v (i s; i,j a 3) 

are algebraically independent. 
Gelfond proved the theorem originally subject to certain supple¬ 

mentary conditions, and the formulation here is due to Tijdeman.* 
As an immediate consequence one sees that if a is an algebraic number 
other than 0 or 1 and/?is a cubic irrational then afi, aP are algebraically 
independent; this follows in fact on taking = /?^_1 and rjj = £, log a. 
Tij deman also derived two variants of Theorem 12.1; he proved that if 
£x> £& £i and rjx, rj2 are linearly independent over the rationals, then 
two at least of £*, are algebraically independent, and moreover 
that if £2> £3 and yx, % are linearly independent over the rationals, 
then two at least of %i3 e&’i are algebraically independent. These 
results include some earlier theorems of Smelev.5 

Very recently, Brownawell" and Waldschmidt1' succeeded inde¬ 
pendently in obtaining a new version of the latter result which sufficed 
to solve a well-known problem of Schneider. They proved: 

t Bibliography t IM- 33 (1971), 149-62. 
§ Mat. Zametki, 3 (1968), 61-8; 4 (1968), 626-32. 
|| J. Number Th. 6(1974), 11-31. f J. Number Th. 5 (1973), 191-202. 

[ H8 1 
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Theorem 12.2. If both £,x, £2 and yx, ij2 are linearly independent over 

the nationals and ife£i’« and e^n2 are algebraic, then two at least of £t, 7)p 

are algebraically independent. 

This implies, more especially, that if £1; £2 and rjx, rj2 are linearly 

independent over the rationals then at least two different numbers 

amongst £*, 7]p e^i are transcendental. It follows at once, on taking 

= 7)x = 1, £2 = r)2 = e, that one at least of ee and ee2 is transcendental. 

Furthermore, from Theorem 12.2, one sees, for instance, that at least 

one of alog a and cc(log a>2 is transcendental for any algebraic number a 

other than 0 or 1. These results represent the nearest approach we 

have to date towards a confirmation of the transcendence of numbers 

of the type log7r and e"3. 

In another direction, Langt has proved: 

Theorem 12.3. If £,x, £2, £3 an^ V2 are linearly independent over 
the rationals then one at least of the numbers e^i is transcendental. 

Surprisingly, the demonstration of Theorem 12.3 is much simpler 

than that of Theorems 12.1 and 12.2, and yet the result admits several 

notable corollaries. In particular, it follows that, for any algebraic 

number a, not 0 or 1, and any transcendental /?, one at least of afi, aP, 

<xfi3 is transcendental; and in fact this result holds for any irrational /? in 

view of the Gelfond-Schneider theorem. As a further example, the 

theorem plainly shows that for any real irrational /?, the function 

cannot assume algebraic values at more than two consecutive 

integral values of x > 2. More general results of this nature, involving, 

for instance, the Weierstrass p-function, were obtained by Rama- 

chandra,* who apparently discovered Theorem 12.3 independently. 

The theorem also throws some light on the problem raised by Schneider 

as to the untenability of the equation 

log a log/5 = logy log 8 

in algebraic numbers a, /?, y, 8, having logarithms linearly independent 

over the rationals; it shows in fact that, given a, y, there cannot be 

two solutions 8 such that all six logarithms are linearly independent. 

The problem is, of course, only a special case of the wider open question 

as to a verification of the algebraic independence of the logarithms of 

algebraic numbers. 

We remark finally that most of our expectations in connexion with 

t Bibliography. | Aria Arilh. M (llt(IH), 05-88. 



120 ALGEBRAIC INDEPENDENCE 

the transcendence properties of the exponential and logarithmic 

functions are covered by a general conjecture, attributed to Schanuel, 

to the effect that if ..., are linearly independent over the rationals, 

then the transcendence degree of the field generated by ..., £n, 

eb, ...,e£n over the rationals is at least n. The conjecture includes 

Theorems 1.4 and 2.1, and moreover it implies the algebraic inde¬ 

pendence of e and n. The power series analogue has been proved by Ax.f 

2. Exponential polynomials 

Our object here is to establish a theorem of Tijdeman1 on the zeros of 

functions of the form 

F(z) = 2 2 f(lc, l) zke'riz. 
k=0 J=1 

We shall assume that Oj, are complex numbers with absolute 

values at most 8, and that the/’s are arbitrary complex numbers for 

which F does not vanish identically. Constants implied by will be 

absolute. We prove: 

Lemma 1. The number of zeros of F in any closed disc, with radius R, 

counted with multiplicities, is KL+RS. 

Tij deman actually obtained the estimate 3 KL + 4 RS, but the constants 

are not important for our purpose here. The main interest of tjie result 

lies in the fact that, in contrast to all previous theorems of its kind, 

there is no dependence on the differences between the (r’s, and it is 

this strengthening that leads to the improvements in Gelfond’s 

results mentioned earlier. 

To commence the proof, let C be the circle centre the origin5 with 

radius R, and let M(R) be the maximum of |.F| on C. Further, let 

W{z) = (z-o)l)...(z-wh), 

where (t)1} ...,0)h run through the zeros of F, taken with multiplicities, 

within and on C. Then FjW is regular within and on any concentric 

circle with larger radius, and so, by the maximum-modulus principle, 

|JF(v)| M(R) < | W{u)\M(4R), 

where u, v are some numbers with \u\ = R and |v| = 4R. Now clearly 

|JF(«)| < (2R)h, |lf(v)| > (3-R)'', 

t Ann. Math. 93 (1971), 252-68. 
t I.M. 33 (1971), 1-7. 
§ Plainly, this choice involves no loss of generality. 
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and thus h \ag(M(±R)jM(R)). 

It remains therefore to show that the number on the right is 

4KL + RS. 

Let the sequence oq,..., oq,..., <rL>..., <rL of N = KL numbers, where 

each <r is repeated K times, be written as ...,7/N. By Newton’s inter¬ 

polation formula we have, for any w, z, 

ezw = 2 anPn(w), 
n = Q 

where Pn(w) = (w-Vi) ••• (w~Vn) (1 < «■ < N), 

r denoting a circle with centre the origin, described in the positive 

sense, including the 77’s and w, and Sn = 0 if n < N, SN — 1. Clearly 

an is independent of w for n < N and aN is an integral function of w. 

We put W-l *_i 

P(w) = S anPJw) = S 
n=0 n=0 

and then it is readily verified that 

m = 1 m i) =2^ o). 
fc = 0 « = 1 » = 0 

We proceed now to employ the latter formula to obtain an upper 

bound for |.F|. 

By Cauchy’s theorem we have 

and thus 

This gives 

F™{0) = f 
' ’ 2m Jc C"+1 ’ 

|.F<»>(0)| < n\M(R)IRn. 

\F{z)\^M(R)NXnl\pn\IR». 
71= 0 

To estimate the latter sum, let 

1 f 

K = toH)rQ^M)dC> 

where Qn{w) = (w — S)n and P denotes a circle aH above including S. 

On comparing the coollioicntH in (/',(£)) 1 and (Qn(Q) 1 when these are 
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expressed as series in decreasing powers of £, we obtain \an\ ^ bn for 

all n < N. But plainly , . 
^ bn = e^s\z\njn\ 

and so, in view of the formula 

nlPn^X arP^(0), 
r—n 

we have 
N-1 N-1 

w!|^w| < n\ S I )$r_n&r = el2is S |2|rSr_n/(r — n)\ ^ |^|”- e21s!Ss 
r=n. ylj r=n 

\F(z)\ ^ M{R)e^\1(\z\IRf 
n = 0 

whence 

On taking \z\ = 4i?, we conclude that 

M(4.R) s: Jf^je8728^, 

and the lemma follows at once. 

3. Heights 

We shall require a more explicit version of Lemma 2 of Chapter 8. The 

result is due to Gelfond, who in fact obtained the proposition in a 

generalized form relating to polynomials in several variables. 

Lemma 2. If P(x) is a polynomial with degree n and height h, and 

if P = P1P2... Pk, where P}{x) is a polynomial with height hj, then 

h ^ e~nhxh%...hk. 

We assume without loss of generality that P(0) #= 0. For any zero p 

of P and any complex number z with \z\ — 1, let w be the projection of 

p on the line through z and —pj\p\, taking w = z if z — ±p/\p\. Then, 

by simple geometry, 

\z-p\ Ss \w-p\ = h(l + \p\)\z-pl\p\\. 

Thus, if pv ..., pn are all the zeros of P, then 

\P(z)\ > 2~*M1...MkR(z), 

where Mj denotes the maximum of Pi on the unit circle and 
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Now for any polynomial 

Q(x) = q0 + q1x+...+qmxm 

we have f \Q(e2ni$)\2d<f> = E |<Z,-|2- 
Jo 3=0 

Hence taking Q = R and noting that R has leading coefficient 1 and 

constant coefficient with absolute value 1, we obtain 

J1 |P(e2^)|2efy$ ^ 21-2%M1...Mkf. 

But, on taking Q = P, we see that the number on the left is at most 

2nh2, and clearly also 

Since en > ni2n, this proves the lemma. 

We shall require also a lemma closely related to the inequality 

|a—/?| > a~nb~m mentioned in §6 of Chapter 8. Again we shall adopt 

the convention that when one refers to the height of a polynomial it is 

implied that the coefficients are rational integers, not all 0. 

Lemma 3. If Px(a;), P2(x) are polynomials with degrees nx, n2 and 

heights hx, h2 respectively and if Plt P2 have no common factor then, for 

any complex number z, 

max(|P1(z)|, |P2(z)|) > (n1 + n2)~i(ni+n2+1)hxnzk2ni. 

The proof depends on the observation that since Px, P2 have no 

common factor, their resultant R is not 0. Now R can be expressed 

as the familiar Sylvester determinant of order nx + n2 formed by 

eliminating x from the equations 

xiP^x) = 0 (0 < i < n2), xtP2(x) = 0 (0 < j < %). 

Thus R is a rational integer and so |P| > 1. On the other hand, R is 

unaltered if one replaces the element in the first column and ith row by 

zi~1P1(z) for i < w2 and by zl_n»_1P2(z) for i > n%. Hence, if \z\ < 1, the 

lemma follows from the upper estimates for the cofactors of these 

elements furnished by Hadamard’s inequality. If |z| > 1 one argues 

similarly, replacing now the elements in the last column by numbers 

as above multiplied by z~">~n»u, 
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4. Algebraic criterion 

We now establish a lemma giving a sufficient condition for a number 

to be algebraic; it was derived in its original form by Gelfond and later 

sharpened by Brownawell and Waldschmidt. It shows that, in a sense, 

a number cannot be too well approximated by algebraic numbers 

unless it is itself algebraic and all the terms in the sequence beyond a 

certain point are equal. We shall actually prove the proposition in a 

form relating to polynomial sequences since this is more useful for 

applications. 

First we need a preliminary lemma. Let P(x) be a polynomial with 

degree n and height h, and let z be any complex number. 

Lemma 4. If |P(z)| s? 1 then P has a factor Q, a power of an 

irreducible polynomial with integer coefficients, such that 

|(?(z)| |P(z)| exp(8n(» + logA)). 

We write P as a product Px...Pk of powers of distinct irreducible 

polynomials and, for brevity, we putp^ = \Pj(z) \. Then, by hypothesis, 

Pi-.-Pk s? 1 and so there exists a suffix l, possibly 1 or k, such that 

Pi — Pi-i>Pi — Pk, Pi-Pi<Pi+i — Pk- 

Now Px... Pj_x and Pl... Pk have degrees at most n, no common factor 

and, in view of Lemma 2, heights at most enh. Hence from Lemma 3 

and the first inequality above we see that 

Pi-.-Pi-i > exp(-4n(n + logA)). 

Similarly, by virtue of the second inequality above, this estimate 

obtains also for pl+1... pk. Thus we have 

Pi <p1...p*exp(8n(rH-logA)), 

and the assertion follows with Q = Pv 

Lemma 5. If (O is a transcendental number and if Pj{x) (j = 1,2,...) 

is a sequence of polynomials with degrees and heights at most nj and hj 

respectively such that 

ni < nni ^ ni> < log^+i < log hp 

then, for some infinite sequence of values ofj, 

log|P,M > -n^ + loghj). 
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Here the implied constants are again absolute. For the proof we 

assume that the latter inequality does not hold for j sufficiently large, 

and we derive a contradiction if the implied constant is large enough. 

By Lemma 4, Pj has a factor Qj, a power of an irreducible polynomial, 

such that . | „ . . | ^ , , . 
l°g \Q}(v)\ < -nfaj + loghj), 

and, by Lemma 2, Qj has height at most enJ h}. It follows from Lemma 3 

that, for all sufficiently large j, Qj is a power of some irreducible 

polynomial Q, say, independent of j; for if Q} and Qj+1 have no common 

factor then 

max (\Qj(o))\, \QJ+l(<o)\) > e~4nj^ 

and, in view of the hypotheses concerning nj+1 and hj+1, this plainly 

contradicts either the previous inequality or its analogue with j 

replaced by j + 1. Since obviously Qj is at most the n} th power of Q, we 

°btam log |0(«)| -(% + logfy), 

and since also rij-> oo as j -> oo, it follows that Q(co) = 0. But this 

contradicts the hypothesis that (0 is transcendental. 

5. Main arguments 

The proofs of Theorems 12.1, 12.2 and 12.3 are similar to demonstra¬ 

tions of earlier chapters and it will suffice therefore to describe them in 

outline. 

For Theorem 12.1, we assume that the field generated by the and 
e£ivj (i <g itj <g 3) over the rationals Q has transcendence degree 1 and 

we derive a contradiction. The field is then generated by a tran¬ 

scendental number a> together with a number Q algebraic over Q(co); 

and one can assume that Q is integral over Q((o). It will be enough to 

treat here the case when the and are integral over Q{<j))\ the 

general result follows similarly on introducing appropriate denomi¬ 

nators. Constants implied by and >, and by cv c2,... will depend 
on the £% i/’s and co, 12 only. 

One begins by constructing for any integer k > 1, an auxiliary 

function T T 

O(s) = 2 ••• £ p(^<» •••>'!•)) to'WAii;i+As£s+Asfe>>« 
a, n a, n 

satisfying <1>(J)(//) = 0 (0 sg j < k) for each 

V = h >h + h Vt + h V:i 0 < h < '»). 
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where 

m = [tf (log &)f], L0 = [k log k], Lx = L2 = L3 = L = [*l(log k)i], 

and the p(A0 ...,A3) are rational integers, not all 0, with absolute 

values at most k?ifc. Such a construction is possible, for clearly 

can be expressed as a linear form in the p’s with coefficients given by 

polynomials in w, Q; the latter have degrees L0 in w, 1 in Q and 

heights at most kf*k. Thus one has to solve M m3kL0 linear equations 

in > L3L0 > 2M unknowns, and Lemma 1 of Chapter 2 is therefore 

applicable. 

Let now C, T be the circles centre the origin described in the positive 

sense with radii k and k$ respectively. Then, for any z on T, 

where A(z) denotes the monic polynomial with m3 zeros i). Hence we 

See^a,t log |0(z)| — m3klogk, 

and since, by Cauchy’s theorem, 

0<%) JL f 
2niJr(z-V)^aZ’ 

it follows that, if j < &(log k)i, then the same estimate obtains with 

A>(z) replaced by But, by Lemma 1, <I> has L3 zeros within 

and on C, and so 4= 0 for some r/ and some j as above. Further, 

<I>( i\r/) is a polynomial in a>, Q with rational integer coefficients, and, on 

taking the product of its conjugates over Q((o), we derive a polynomial 

P(x) with degree n and height h satisfying 

n<^k\ogk, \ogh &(log&)i, 

log |P(w)| — m3klogk -4 — k2 (log 

As k increases we obtain a sequence of such polynomials P and, 

plainly, this contradicts Lemma 5. The contradiction proves the 

theorem. 

The proof of Theorem 12.2 is similar. Under analogous initial 

assumptions, one constructs, for any integer k > 1, an auxiliary 

function u u 

^(z) = 2 ... 2 2>(A0,...,A3)aA 
A(=0 A j — 0 

satisfying = 0 (0 < j < k) for each 

V = kVi + kVi (1 < k < mlt I $ k ^ mi), 
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where ml = [&l(log&)~l], m2 = [(&log&)£], 

L0 = Ls = k, Lx = L2= [B(logk)i], 

and the^(A0,..., As) are again rational integers, not all 0, with absolute 

values at most k?ik. The construction is certainly possible, for, in view 

of the hypothesis that and are algebraic, the coefficients in the 

linear forms have the same properties as in the previous argu¬ 

ment, whence one has only to solve M <4 m1m2k2 linear equations in 

> k3 (logi)i > 2M unknowns. Now by the first integral formula above 

with A denoting here the monic polynomial with m1m2 zeros if, one has 

log|0(z)| -4 — m1m2^log^, 

for all z on T, and, by the second integral formula, we see that the same 

estimate obtains with <D(z) replaced by for all j 4 k and all 

V' = + (1 < l'i 4 1 < l't 4 mi), 

where m'x = [&i(log &)“$], m2 = [M(log&)l]. 

But, by Lemma 1, O has LXL2LS zeros within and on C, and so 

4= 0 for some rj' and some j as above. Thus, on taking con¬ 

jugates over Q((o) and appealing again to the hypothesis concerning 

e»i^2, e^2’2, we derive a polynomial P(x) with degree n and height h 

satisfying w ^ k(log k)l, log h <4 k log k, 

log|P(w)| <4 — m1m2^log^ -4 — &2(log&)i. 

This contradicts Lemma 5 and the required result follows. 

Finally, for the proof of Theorem 12.3, one assumes that all the e^ii 

are algebraic and, adopting a notation as above, one constructs, for 

any integer k > 1, an auxiliary function 

<D(z) = S S Sp(Ai,A„A3)c»i&+**^*»«« 
a1=oa,=oa,=o 

satisfying A>(rf) — 0 for each 

If = Iil/i +12?/2 (1 ^ ^2 ^ B> 

where L = [&$], and the ^(A1; A2, A3) are rational integers, not all 0, 

with absolute values at most ef*. If now m, is any integer > k and if 

$>(tf) = 0 for all 7f with 1 s; lv l2 4 m then also <!>(?/') = 0 for all 

7] — /j -t- l2y2 (1 4 l\, l2 4 in + \ ). 

Indeed, the function <!>//!, where A denotes the monic |x>lymmiial with 
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m2 zeros rj, is clearly regular within and on the circle G centre the origin 

and radius mg, and so, by the maximum-modulus principle or, alter¬ 

natively, the first integral formula above, we have 

log |<I>(9/')| -4 —m2logm; 

on the other hand, on multiplying <!>(?/') by a suitable denominator, 

one obtains an algebraic integer in a fixed field with size s satisfying 

log s -4 mi, and the assertion now follows on considering the norm of 

<!>(?/'). We conclude that <D(?/) = 0 for all positive integral values of 

and hence <I>(z) vanishes identically. But this contradicts the 

hypothesis that £3, £3 are linearly independent over the rationals, 

and the contradiction proves the theorem. 
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